SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marklund Niklas) "

Sökning: WFRF:(Marklund Niklas)

  • Resultat 1-50 av 217
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gard, Anna, et al. (författare)
  • Quality of life of ice hockey players after retirement due to concussions
  • 2020
  • Ingår i: Concussion. - : Future Medicine. - 2056-3299. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sports-related concussion (SRC) is increasingly recognized as a potential health problem in ice hockey. Quality of life (QoL) in players retiring due to SRC has not been thoroughly addressed. Materials & methods: QoL using the Sports Concussion Assessment Tool 5th Edition, Impact of Event Scale-Revised and Short Form Health Survey was measured in Swedish ice hockey players who retired due to persistence of postconcussion symptoms or fear of attaining additional SRC. Results: A total of 76 players were assessed, on average of 5 years after their most recent SRC. Overall, retired players had a high burden of postconcussion symptoms and reduced QoL. Conclusion: Retired concussed ice hockey players have a reduced QoL, particularly those retiring due to postconcussion symptoms. Symptom burden should be continuously evaluated and guide the decision to retire.
  •  
2.
  • Abu Hamdeh, Sami, et al. (författare)
  • Brain tissue Aβ42 levels are linked to shunt response in idiopathic normal pressure hydrocephalus
  • 2019
  • Ingår i: Journal of Neurosurgery. - : Journal of Neurosurgery Publishing Group (JNSPG). - 0022-3085 .- 1933-0693. ; 130:1, s. 121-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective The authors conducted a study to test if the cortical brain tissue levels of soluble amyloid beta (Aβ) reflect the propensity of cortical Aβ aggregate formation and may be an additional factor predicting surgical outcome following idiopathic normal pressure hydrocephalus (iNPH) treatment.Methods Highly selective ELISAs (enzyme-linked immunosorbent assays) were used to quantify soluble Aβ40, Aβ42, and neurotoxic Aβ oligomers/protofibrils, associated with Aβ aggregation, in cortical biopsy samples obtained in patients with iNPH (n = 20), sampled during ventriculoperitoneal (VP) shunt surgery. Patients underwent pre- and postoperative (3-month) clinical assessment with a modified iNPH scale. The preoperative CSF biomarkers and the levels of soluble and insoluble Aβ species in cortical biopsy samples were analyzed for their association with a favorable outcome following the VP shunt procedure, defined as a ≥ 5-point increase in the iNPH scale.Rrsults The brain tissue levels of Aβ42 were negatively correlated with CSF Aβ42 (Spearman's r = -0.53, p < 0.05). The Aβ40, Aβ42, and Aβ oligomer/protofibril levels in cortical biopsy samples were higher in patients with insoluble cortical Aβ aggregates (p < 0.05). The preoperative CSF Aβ42 levels were similar in patients responding (n = 11) and not responding (n = 9) to VP shunt treatment at 3 months postsurgery. In contrast, the presence of cortical Aβ aggregates and high brain tissue Aβ42 levels were associated with a poor outcome following VP shunt treatment (p < 0.05).Conclusions Brain tissue measurements of soluble Aβ species are feasible. Since high Aβ42 levels in cortical biopsy samples obtained in patients with iNPH indicated a poor surgical outcome, tissue levels of Aβ species may be associated with the clinical response to shunt treatment.
  •  
3.
  • Abu Hamdeh, Sami, 1982- (författare)
  • Clinical Consequences of Axonal Injury in Traumatic Brain Injury
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Traumatic brain injury (TBI), mainly caused by road-traffic accidents and falls, is a leading cause of mortality. Survivors often display debilitating motor, sensory and cognitive symptoms, leading to reduced quality of life and a profound economic burden to society. Additionally, TBI is a risk factor for future neurodegenerative disorders including Alzheimer’s disease (AD). Commonly, TBI is categorized into focal and diffuse injuries, and based on symptom severity into mild, moderate and severe TBI. Diffuse axonal injury (DAI), biomechanically caused by rotational acceleration-deceleration forces at impact, is characterized by widespread axonal injury in superficial and deep white substance. DAI comprises a clinical challenge due to its variable course and unreliable prognostic methods. Furthermore, axonal injury may convey the link to neurodegeneration since molecules associated with neurodegenerative events aggregate in injured axons.The aim of this thesis was to study clinical consequences of axonal injury, its detection and pathological features, and potential link to neurodegeneration in severe TBI patients treated at the neurointensive care unit at Uppsala University Hospital. In paper I and IV DAI patients were studied for the relation of elevated intracranial pressure (ICP) and poor outcome to axonal injury on magnetic resonance imaging. In paper II, soluble amyloid-beta aggregates (oligomers and protofibrils), characteristic of AD pathology, were investigated in surgically resected brain tissue from severe TBI patients, using highly-selective Enzyme-Linked ImmunoSorbent Assays. In paper III, brain tissue biopsy samples from TBI patients with either focal injury or DAI were examined for differential proteome profiles using mass spectrometry-based proteomics.The results provide evidence that axonal injury, located in the central brain stem, in substantia nigra and the mesencephalic tegmentum, is particularly related to poor outcome and increased ICP during neurointensive care of DAI patients. A novel classification system for prognostication after DAI is proposed. Furthermore, the thesis shows that severe TBI induces rapid accumulation of neurotoxic soluble amyloid-beta oligomers and protofibrils. In addition, DAI initiates unique proteome profiles different from that of focal TBI in structurally normal-appearing brain. These findings have implication for the clinical management of DAI patients, and provide new insight in the neuropathological consequences of axonal injury.
  •  
4.
  • Abu Hamdeh, Sami, et al. (författare)
  • Differential DNA methylation of the genes for amyloid precursor protein, tau, and neurofilaments in human traumatic brain injury
  • 2021
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 38:12, s. 1662-1669
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is an established risk factor for neurodegenerative disorders and dementias. Epigenetic modifications, such as DNA methylation, may alter the expression of genes without altering the DNA sequence in response to environmental factors. We hypothesized that DNA methylation changes may occur in the injured human brain and be implicated in the neurodegenerative aftermath of TBI. The DNA methylation status of genes related to neurodegeneration; for example, amyloid beta precursor protein (APP), microtubule associated protein tau (MAPT), neurofilament heavy (NEFH), neurofilament medium (NEFM), and neurofilament light (NEFL), was analyzed in fresh, surgically resected human brain tissue from 17 severe TBI patients and compared with brain biopsy samples from 19 patients with idiopathic normal pressure hydrocephalus (iNPH). We also performed an epigenome-wide association study (EWAS) comparing TBI patients with iNPH controls. Thirty-eight CpG sites in the APP, MAPT, NEFH, and NEFL genes were differentially methylated by TBI. Among the top 20 differentially methylated CpG sites, 11 were in the APP gene. In addition, the EWAS evaluating 828,888 CpG sites revealed 308 differentially methylated CpG sites in genes related to cellular/anatomical structure development, cell differentiation, and anatomical morphogenesis. These preliminary findings provide the first evidence of an altered DNA methylome in the injured human brain, and may have implications for the neurodegenerative disorders associated with TBI.
  •  
5.
  • Abu Hamdeh, Sami, et al. (författare)
  • Extended anatomical grading in diffuse axonal injury using MRI : Hemorrhagic lesions in the substantia nigra and mesencephalic tegmentum indicate poor long-term outcome
  • 2017
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 5:34, s. 341-352
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical outcome after traumatic diffuse axonal injury (DAI) is difficult to predict. In this study, three magnetic resonance imaging (MRI) sequences were used to quantify the anatomical distribution of lesions, to grade DAI according to the Adams grading system, and to evaluate the value of lesion localization in combination with clinical prognostic factors to improve outcome prediction. Thirty patients (mean 31.2 years ±14.3 standard deviation) with severe DAI (Glasgow Motor Score [GMS] <6) examined with MRI within 1 week post-injury were included. Diffusion-weighted (DW), T2*-weighted gradient echo and susceptibility-weighted (SWI) sequences were used. Extended Glasgow outcome score was assessed after 6 months. Number of DW lesions in the thalamus, basal ganglia, and internal capsule and number of SWI lesions in the mesencephalon correlated significantly with outcome in univariate analysis. Age, GMS at admission, GMS at discharge, and low proportion of good monitoring time with cerebral perfusion pressure <60 mm Hg correlated significantly with outcome in univariate analysis. Multivariate analysis revealed an independent relation with poor outcome for age (p = 0.005) and lesions in the mesencephalic region corresponding to substantia nigra and tegmentum on SWI (p  = 0.008). We conclude that higher age and lesions in substantia nigra and mesencephalic tegmentum indicate poor long-term outcome in DAI. We propose an extended MRI classification system based on four stages (stage I—hemispheric lesions, stage II—corpus callosum lesions, stage III—brainstem lesions, and stage IV—substantia nigra or mesencephalic tegmentum lesions); all are subdivided by age (≥/<30 years).
  •  
6.
  • Abu Hamdeh, Sami, et al. (författare)
  • Intracranial pressure elevations in diffuse axonal injury : association with nonhemorrhagic MR lesions in central mesencephalic structures
  • 2019
  • Ingår i: Journal of Neurosurgery. - 0022-3085 .- 1933-0693. ; 131:2, s. 604-611
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Increased intracranial pressure (ICP) in patients with severe traumatic brain injury (TBI) with diffuse axonal injury (DAI) is not well defined. This study investigated the occurrence of increased ICP and whether clinical factors and lesion localization on MRI were associated with increased ICP in patients with DAI.Methods: Fifty-two patients with severe TBI (median age 24 years, range 9–61 years), who had undergone ICP monitoring and had DAI on MRI, as determined using T2*-weighted gradient echo, susceptibility-weighted imaging, and diffusion-weighted imaging (DWI) sequences, were enrolled. The proportion of good monitoring time (GMT) with ICP > 20 mm Hg during the first 120 hours postinjury was calculated and associations with clinical and MRI-related factors were evaluated using linear regression.Results: All patients had episodes of ICP > 20 mm Hg. The mean proportion of GMT with ICP > 20 mm Hg was 5%, and 27% of the patients (14/52) spent more than 5% of GMT with ICP > 20 mm Hg. The Glasgow Coma Scale motor score at admission (p = 0.04) and lesions on DWI sequences in the substantia nigra and mesencephalic tegmentum (SN-T, p = 0.001) were associated with the proportion of GMT with ICP > 20 mm Hg. In multivariable linear regression, lesions on DWI sequences in SN-T (8% of GMT with ICP > 20 mm Hg, 95% CI 3%–13%, p = 0.004) and young age (−0.2% of GMT with ICP > 20 mm Hg, 95% CI −0.07% to −0.3%, p = 0.002) were associated with increased ICP.Conclusions: Increased ICP occurs in approximately one-third of patients with severe TBI who have DAI. Age and lesions on DWI sequences in the central mesencephalon (i.e., SN-T) are associated with elevated ICP. These findings suggest that MR lesion localization may aid prediction of increased ICP in patients with DAI.Abbreviations: ADC = apparent diffusion coefficient; CPP = cerebral perfusion pressure; DAI = diffuse axonal injury; DWI = diffusion-weighted imaging; EVD = external ventricular drain; GCS = Glasgow Coma Scale; GMT = good monitoring time; GOSE = Glasgow Outcome Scale–Extended; ICC = intraclass correlation coefficient; ICP = intracranial pressure; MAP = mean arterial blood pressure; NICU = neurointensive care unit; SN-T = substantia nigra and mesencephalic tegmentum; SWI = susceptibility-weighted imaging; TBI = traumatic brain injury; T2*GRE = T2*-weighted gradient echo.
  •  
7.
  • Abu Hamdeh, Sami, et al. (författare)
  • Intracranial pressure elevations in diffuse axonal injury are associated with non-hemorrhagic MR lesions in central mesencephalic structures
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Objective: Increased intracranial pressure (ICP) in severe traumatic brain injury (TBI) patients with diffuse axonal injury (DAI) is not well defined. This study investigated the occurrence of increased ICP and whether clinical factors and lesion localization on MRI were associated with increased ICP in DAI patients.Methods: Fifty-two severe TBI patients (median 24, range 9-61 years), with ICP-monitoring and DAI on MRI, using T2*-weighted gradient echo, susceptibility-weighted and diffusion-weighted (DW) sequences, were enrolled. Proportion of good monitoring time (GMT) with ICP>20 mmHg during the first 120 hours post-injury was calculated and associations with clinical and MRI-related factors were evaluated using linear regression. Results: All patients had episodes of ICP>20 mmHg. The mean proportion of GMT with ICP>20 mmHg was 5% and 27% of the patients (14/52) had more than 5% of GMT with ICP>20 mmHg. Glasgow Coma Scale motor score at admission (P=0.04) and lesions on DW images in the substantia nigra and mesencephalic tegmentum (SN-T, P=0.001) were associated with the proportion of GMT with ICP>20 mmHg. In multivariate linear regression, lesions on DW images in SN-T (8% of GMT with ICP>20 mmHg, 95% CI 3–13%, P=0.004) and young age (-0.2% of GMT with ICP>20 mmHg, 95% CI -0.07–-0.3%, P=0.0008) were associated with increased ICP.   Conclusions: Increased ICP occurs in ~1/3 of severe TBI patients with DAI. Age and lesions on DW images in the central mesencephalon (SN-T) associate with elevated ICP. These findings suggest that MR lesion localization may aid prediction of increased ICP in DAI patients.
  •  
8.
  • Abu Hamdeh, Sami, et al. (författare)
  • MRI analysis of diffuse axonal injury - Hemorrhagic lesions in the mesencephalon idicate poor long-term outcome
  • 2016
  • Ingår i: MRI analysis of diffuse axonal injury - Hemorrhagic lesions in the mesencephalon idicate poor long-term outcome. - : Springer.
  • Konferensbidrag (refereegranskat)abstract
    • Purpose: Clinical outcome after traumatic diffuse axonal injury (DAI) is difficult to predict. Three MRI techniques were compared in demonstrating acute brain lesions.  Relationship of the anatomical distribution of the lesions in combination with clinical prognostic factors to outcome after 6 months was evaluated.  Methods and Materials: Thirty patients, aged 16-60 years (mean 31.2 years) with severe DAI (Glasgow Motor Score = GMS < 6) were examined with MRI at 1.5T within one week after the injury. A diffusion-weighted (DW) sequence (SE-EPI, b value 1000 s/mm2), a T2*-weighted gradient echo (T2*GRE) sequence and a susceptibility-weighted (SWI) sequence were evaluated by two independent reviewers with short and long neuroradiological experiences. Clinical outcome was assessed with Extended Glasgow Outcome Score (GOSE) after ≥ 6 months.Results: Interreviewer agreement for DAI classification was very good (ҡ 0.82 – 0.91) with all three sequences. SWI visualized more lesions than the T2*GRE or DW sequence.  In univariate analysis, number of DW lesions in the deep gray matter area including the internal capsules, number of SWI lesions in the mesencephalon, age, and GMS at admission and discharge correlated significantly with poor outcome.  Multivariate analysis only revealed an independent relation with poor outcome for age (p = 0.011) and lesions in the mesencephalic region including crura cerebri, substantia nigra and tegmentum on SWI (p = 0.032).Conclusion: SWI is the most sensitive technique to visualize lesions in DAI. Age over 30 years and hemorrhagic mesencephalic lesions anterior to the tectum are indicators of poor long-term outcome in DAI.
  •  
9.
  • Abu Hamdeh, Sami, et al. (författare)
  • "Omics" in traumatic brain injury : novel approaches to a complex disease
  • 2021
  • Ingår i: Acta Neurochirurgica. - : Springer Nature. - 0001-6268 .- 0942-0940. ; 163:9, s. 2581-2594
  • Forskningsöversikt (refereegranskat)abstract
    • BackgroundTo date, there is neither any pharmacological treatment with efficacy in traumatic brain injury (TBI) nor any method to halt the disease progress. This is due to an incomplete understanding of the vast complexity of the biological cascades and failure to appreciate the diversity of secondary injury mechanisms in TBI. In recent years, techniques for high-throughput characterization and quantification of biological molecules that include genomics, proteomics, and metabolomics have evolved and referred to as omics.MethodsIn this narrative review, we highlight how omics technology can be applied to potentiate diagnostics and prognostication as well as to advance our understanding of injury mechanisms in TBI.ResultsThe omics platforms provide possibilities to study function, dynamics, and alterations of molecular pathways of normal and TBI disease states. Through advanced bioinformatics, large datasets of molecular information from small biological samples can be analyzed in detail and provide valuable knowledge of pathophysiological mechanisms, to include in prognostic modeling when connected to clinically relevant data. In such a complex disease as TBI, omics enables broad categories of studies from gene compositions associated with susceptibility to secondary injury or poor outcome, to potential alterations in metabolites following TBI.ConclusionThe field of omics in TBI research is rapidly evolving. The recent data and novel methods reviewed herein may form the basis for improved precision medicine approaches, development of pharmacological approaches, and individualization of therapeutic efforts by implementing mathematical “big data” predictive modeling in the near future.
  •  
10.
  • Abu Hamdeh, Sami, et al. (författare)
  • Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The early molecular response to severe traumatic brain injury (TBI) was evaluated using biopsies of structurally normal-appearing cortex, obtained at location for intracranial pressure (ICP) monitoring, from 16 severe TBI patients. Mass spectrometry (MS; label free and stable isotope dimethyl labeling) quantitation proteomics showed a strikingly different molecular pattern in TBI in comparison to cortical biopsies from 11 idiopathic normal pressure hydrocephalus patients. Diffuse TBI showed increased expression of peptides related to neurodegeneration (Tau and Fascin, p < 0.05), reduced expression related to antioxidant defense (Glutathione S-transferase Mu 3, Peroxiredoxin-6, Thioredoxin-dependent peroxide reductase; p < 0.05) and increased expression of potential biomarkers (e.g. Neurogranin, Fatty acid-binding protein, heart p < 0.05) compared to focal TBI. Proteomics of human brain biopsies displayed considerable molecular heterogeneity among the different TBI subtypes with consequences for the pathophysiology and development of targeted treatments for TBI.
  •  
11.
  •  
12.
  • Abu Hamdeh, Sami, et al. (författare)
  • Rapid amyloid-β oligomer and protofibril accumulation in traumatic brain injury
  • 2018
  • Ingår i: Brain Pathology. - : Wiley. - 1015-6305 .- 1750-3639. ; 28:4, s. 451-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of amyloid-β (Aβ) is central to Alzheimer's disease (AD) pathogenesis and associated with progressive neurodegeneration in traumatic brain injury (TBI). We analyzed predisposing factors for Aβ deposition including monomeric Aβ40, Aβ42 and Aβ oligomers/protofibrils, Aβ species with pronounced neurotoxic properties, following human TBI. Highly selective ELISAs were used to analyze N-terminally intact and truncated Aβ40 and Aβ42, as well as Aβ oligomers/protofibrils, in human brain tissue, surgically resected from severe TBI patients (n = 12; mean age 49.5 ± 19 years) due to life-threatening brain swelling/hemorrhage within one week post-injury. The TBI tissues were compared to post-mortem AD brains (n = 5), to post-mortem tissue of neurologically intact (NI) subjects (n = 4) and to cortical biopsies obtained at surgery for idiopathic normal pressure hydrocephalus patients (iNPH; n = 4). The levels of Aβ40 and Aβ42 were not elevated by TBI. The levels of Aβ oligomers/protofibrils in TBI were similar to those in the significantly older AD patients and increased compared to NI and iNPH controls (P < 0.05). Moreover, TBI patients carrying the AD risk genotype Apolipoprotein E epsilon3/4 (APOE ε3/4; n = 4) had increased levels of Aβ oligomers/protofibrils (P < 0.05) and of both N-terminally intact and truncated Aβ42 (P < 0.05) compared to APOE ε3/4-negative TBI patients (n = 8). Neuropathological analysis showed insoluble Aβ aggregates (commonly referred to as Aβ plaques) in three TBI patients, all of whom were APOE ε3/4 carriers. We conclude that soluble intermediary Aβ aggregates form rapidly after TBI, especially among APOE ε3/4 carriers. Further research is needed to determine whether these aggregates aggravate the clinical short- and long-term outcome in TBI.
  •  
13.
  • Al-Husseini, Ali, et al. (författare)
  • Long-term postural control in elite athletes following mild traumatic brain injury
  • 2022
  • Ingår i: Frontiers in Neurology. - : Frontiers Media S.A.. - 1664-2295. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Traumas to the head and neck are common in sports and often affects otherwise healthy young individuals. Sports-related concussions (SRC), defined as a mild traumatic brain injury (mTBI), may inflict persistent neck and shoulder pain, and headache, but also more complex symptoms, such as imbalance, dizziness, and visual disturbances. These more complex symptoms are difficult to identify with standard health care diagnostic procedures.Objective: To investigate postural control in a group of former elite athletes with persistent post-concussive symptoms (PPCS) at least 6 months after the incident.Method: Postural control was examined using posturography during quiet stance and randomized balance perturbations with eyes open and eyes closed. Randomized balance perturbations were used to examine motor learning through sensorimotor adaptation. Force platform recordings were converted to reflect the energy used to maintain balance and spectrally categorized into total energy used, energy used for smooth corrective changes of posture (i.e., <0.1 Hz), and energy used for fast corrective movements to maintain balance (i.e., >0.1 Hz).Results: The mTBI group included 20 (13 males, mean age 26.6 years) elite athletes with PPCS and the control group included 12 athletes (9 males, mean age 26.4 years) with no history of SRC. The mTBI group used significantly more energy during balance perturbations than controls: +143% total energy, p = 0.004; +122% low frequency energy, p = 0.007; and +162% high frequency energy, p = 0.004. The mTBI subjects also adapted less to the balance perturbations than controls in total (18% mTBI vs. 37% controls, p = 0.042), low frequency (24% mTBI vs. 42% controls, p = 0.046), and high frequency (6% mTBI vs. 28% controls, p = 0.040). The mTBI subjects used significantly more energy during quiet stance than controls: +128% total energy, p = 0.034; +136% low-frequency energy, p = 0.048; and +109% high-frequency energy, p = 0.015.Conclusion: Athletes with previous mTBI and PPCS used more energy to stand compared to controls during balance perturbations and quiet stance and had diminished sensorimotor adaptation. Sports-related concussions are able to affect postural control and motor learning.
  •  
14.
  • Al-Husseini, Ali, et al. (författare)
  • Shorter Recovery Time in Concussed Elite Ice Hockey Players by Early Head-and-Neck Cooling: A Clinical Trial
  • 2023
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 40:11-12, s. 1075-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • A sports-related concussion (SRC) is most commonly sustained in contact sports, and is defined as a mild traumatic brain injury. An exercise-induced elevation of core body temperature is associated with increased brain temperature that may accelerate secondary injury processes following SRC, and exacerbate the brain injury. In a recent pilot study, acute head-neck cooling of 29 concussed ice hockey players resulted in shorter time to return-to-play. Here, we extended the clinical trial to include players of 19 male elite Swedish ice hockey teams over five seasons (2016-2021). In the intervention teams, acute head-neck cooling was implemented using a head cap for ≥45 min in addition to the standard SRC management used in controls. The primary endpoint was time from SRC until return-to-play (RTP). Sixty-one SRCs were included in the intervention group and 71 SRCs in the control group. The number of previous SRCs was 2 (median and interquartile range [IQR]: 1.0-2.0) and 1 (IQR 1.0-2.0) in the intervention and control groups, respectively; p = 0.293. Median time to initiate head-neck cooling was 10 min (IQR 7-15; range 5-30 min) and median duration of cooling was 45 min (IQR 45-50; range 45-70 min). The median time to RTP was 9 days in the intervention group (IQR 7.0-13.5 days) and 13 days in the control group (IQR 9-30; p < 0.001). The proportion of players out from play for more than the expected recovery time of 14 days was 24.7% in the intervention group, and 43.7% in controls (p < 0.05). Study limitations include that: 1) allocation to cooling or control management was at the discretion of the medical staff of each team, decided prior to each season, and not by strict randomization; 2) no sham cap was used and evaluations could not be performed by blinded assessors; and 3) it could not be established with certainty that injury severity was similar between groups. While the results should thus be interpreted with caution, early head-neck cooling, with the aim of attenuating cerebral hyperthermia, may reduce post-SRC symptoms and lead to earlier return-to-play in elite ice hockey players.
  •  
15.
  • Axelson, Hans, 1965-, et al. (författare)
  • Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat
  • 2013
  • Ingår i: Restorative Neurology and Neuroscience. - 0922-6028 .- 1878-3627. ; 31:1, s. 73-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Recovery is limited following traumatic brain injury (TBI) since injured axons regenerate poorly and replacement of lost cells is minimal. Behavioral improvements could instead be due to plasticity of uninjured brain regions. We hypothesized that plasticity of the uninjured hemisphere occurs contralateral to a focal TBI in the adult rat. Thus, we performed cortical mapping of the cortex contralateral to the TBI using intracortical microstimulation (ICMS). Methods: A focal TBI was induced using the weight-drop technique (n = 5) and sham-injured animals were used as controls (n = 4). At five weeks post-injury, ICMS was used to map the motor area contralateral to the injury. Motor responses were detected by visual inspection and electromyography (EMG). Results: In sham- and brain-injured animals, numerous fore- and hindlimb motor responses contralateral to the stimulation (ipsilateral to the injury) were obtained. Compared to sham-injured controls, there was a markedly increased (p < 0.05) number of fore- and hindlimb responses ipsilateral to the stimulation after TBI. Conclusion: Following focal TBI in the rat, our data suggest reorganization of cortical and/or subcortical regions in the uninjured hemisphere contralateral to a focal TBI leading to an altered responsiveness to ICMS. Although we cannot exclude that these changes are maladaptive, it is plausible that this plasticity process positively influences motor recovery after TBI.
  •  
16.
  • Bach Baunsgaard, Carsten, et al. (författare)
  • Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
  • 2018
  • Ingår i: Spinal cord. - : Springer Science and Business Media LLC. - 1476-5624 .- 1362-4393. ; 56, s. 106-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Prospective quasi-experimental study, pre- and post-design.Assess safety, feasibility, training characteristics and changes in gait function for persons with spinal cord injury (SCI) using the robotic exoskeletons from Ekso Bionics.Nine European rehabilitation centres.Robotic exoskeleton gait training, three times weekly over 8 weeks. Time upright, time walking and steps in the device (training characteristics) were recorded longitudinally. Gait and neurological function were measured by 10 Metre Walk Test (10 MWT), Timed Up and Go (TUG), Berg Balance Scale (BBS), Walking Index for Spinal Cord Injury (WISCI) II and Lower Extremity Motor Score (LEMS).Fifty-two participants completed the training protocol. Median age: 35.8 years (IQR 27.5-52.5), men/women: N=36/16, neurological level of injury: C1-L2 and severity: AIS A-D (American Spinal Injury Association Impairment Scale). Time since injury (TSI)<1 year, N=25;>1 year, N=27. No serious adverse events occurred. Three participants dropped out following ankle swelling (overuse injury). Four participants sustained a Category II pressure ulcer at contact points with the device but completed the study and skin normalized. Training characteristics increased significantly for all subgroups. The number of participants with TSI<1 year and gait function increased from 20 to 56% (P=0.004) and 10MWT, TUG, BBS and LEMS results improved (P<0.05). The number of participants with TSI>1 year and gait function, increased from 41 to 44% and TUG and BBS results improved (P<0.05).Exoskeleton training was generally safe and feasible in a heterogeneous sample of persons with SCI. Results indicate potential benefits on gait function and balance.
  •  
17.
  •  
18.
  • Bakalkin, Georgy, et al. (författare)
  • Unilateral traumatic brain injury of the left and right hemisphere produces the left hindlimb response in rats
  • 2021
  • Ingår i: Experimental Brain Research. - : Springer Science and Business Media LLC. - 0014-4819 .- 1432-1106. ; 239:7, s. 2221-2232
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.
  •  
19.
  • Bartley, Andreas, et al. (författare)
  • Effect of Irrigation Fluid Temperature on Recurrence in the Evacuation of Chronic Subdural Hematoma A Randomized Clinical Trial
  • 2023
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157.
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportanceThe effect of a physical property of irrigation fluid (at body vs room temperature) on recurrence rate in the evacuation of chronic subdural hematoma (cSDH) needs further study.ObjectiveTo explore whether irrigation fluid temperature has an influence on cSDH recurrence.Design, Setting, and ParticipantsThis was a multicenter randomized clinical trial performed between March 16, 2016, and May 30, 2020. The follow-up period was 6 months. The study was conducted at 3 neurosurgical departments in Sweden. All patients older than 18 years undergoing cSDH evacuation during the study period were screened for eligibility in the study.InterventionsThe study participants were randomly assigned by 1:1 block randomization to the cSDH evacuation procedure with irrigation fluid at room temperature (RT group) or at body temperature (BT group).Main Outcomes and MeasuresThe primary end point was recurrence requiring reoperation within 6 months. Secondary end points were mortality, health-related quality of life, and complication frequency.ResultsAt 6 months after surgery, 541 patients (mean [SD] age, 75.8 [9.8] years; 395 men [73%]) had a complete follow-up according to protocol. There were 39 of 277 recurrences (14%) requiring reoperation in the RT group, compared with 16 of 264 recurrences (6%) in the BT group (odds ratio, 2.56; 95% CI, 1.38-4.66; P < .001). There were no significant differences in mortality, health-related quality of life, or complication frequency.Conclusions and RelevanceIn this study, irrigation at body temperature was superior to irrigation at room temperature in terms of fewer recurrences. This is a simple, safe, and readily available technique to optimize outcome in patients with cSDH. When irrigation is used in cSDH surgery, irrigation fluid at body temperature should be considered standard of care.
  •  
20.
  • Bartley, Andreas, et al. (författare)
  • The Swedish study of Irrigation-fluid temperature in the evacuation of Chronic subdural hematoma (SIC!) : study protocol for a multicenter randomized controlled trial
  • 2017
  • Ingår i: Trials. - : BIOMED CENTRAL LTD. - 1745-6215. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Chronic subdural hematoma (cSDH) is one of the most common conditions encountered in neurosurgical practice. Recurrence, observed in 5-30% of patients, is a major clinical problem. The temperature of the irrigation fluid used during evacuation of the hematoma might theoretically influence recurrence rates since irrigation fluid at body temperature (37 degrees C) may beneficially influence coagulation and cSDH solubility when compared to irrigation fluid at room temperature. Should no difference in recurrence rates be observed when comparing irrigation-fluid temperatures, there is no need for warmed fluids during surgery. Our main aim is to investigate the effect of irrigation-fluid temperature on recurrence rates and clinical outcomes after cSDH evacuation using a multicenter randomized controlled trial design.Methods: The study will be conducted in three neurosurgical departments with population-based catchment areas using a similar surgical strategy. In total, 600 patients fulfilling the inclusion criteria will randomly be assigned to either intraoperative irrigation with fluid at body temperature or room temperature. The power calculation is based on a retrospective study performed at our department showing a recurrence rate of 5% versus 12% when comparing irrigation fluid at body temperature versus fluid at room temperature (unpublished data). The primary endpoint is recurrence rate of cSDH analyzed at 6 months post treatment. Secondary endpoints are mortality rate, complications and health-related quality of life.Discussion: Irrigation-fluid temperature might influence recurrence rates in the evacuation of chronic subdural hematomas. We present a study protocol for a multicenter randomized controlled trial investigating our hypothesis that irrigation fluid at body temperature is superior to room temperature in reducing recurrence rates following evacuation of cSDH.
  •  
21.
  • Baunsgaard, C. B., et al. (författare)
  • EXOSKELETON GAIT TRAINING AFTER SPINAL CORD INJURY: AN EXPLORATORY STUDY ON SECONDARY HEALTH CONDITIONS
  • 2018
  • Ingår i: Journal of Rehabilitation Medicine. - : Medical Journals Sweden AB. - 1650-1977 .- 1651-2081. ; 50:9, s. 806-813
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To explore changes in pain, spasticity, range of motion, activities of daily living, bowel and lower urinary tract function and quality of life of individuals with spinal cord injury following robotic exoskeleton gait training. Methods: Three training sessions per week for 8 weeks using an Ekso GT robotic exoskeleton (Ekso Bionics). Included were individuals with recent (<1 year) or chronic (>1 year) injury, paraplegia and tetraplegia, complete and incomplete injury, men and women. Results: Fifty-two participants completed the training protocol. Pain was reported by 52% of participants during the week prior to training and 17% during training, but no change occurred longitudinally. Spasticity decreased after a training session compared with before the training session (p< 0.001), but not longitudinally. Chronically injured participants increased Spinal Cord Independence Measure (SCIM III) from 73 to 74 (p= 0.008) and improved life satisfaction (p= 0.036) over 8 weeks of training. Recently injured participants increased SCIM III from 62 to 70 (p<0.001), but no significant change occurred in life satisfaction. Range of motion, bowel and lower urinary function did not change over time. Conclusion: Training seemed not to provoke new pain. Spasticity decreased after a single training session. SCIM III and quality of life increased longitudinally for subsets of participants.
  •  
22.
  •  
23.
  • Berglund, Emelie, et al. (författare)
  • Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor microenvironment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies.
  •  
24.
  • Blaschke, Stefan J., et al. (författare)
  • Early Blood–Brain Barrier Impairment as a Pathological Hallmark in a Novel Model of Closed-Head Concussive Brain Injury (CBI) in Mice
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - 1661-6596. ; 25:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of unrestrained, single vs. repetitive concussive brain injury (CBI) in male C56Bl/6j mice. Longitudinal behavioral assessments were conducted for up to seven days afterward, alongside the evaluation of structural cerebral integrity by in vivo magnetic resonance imaging (MRI, 9.4 T), and validated ex vivo by histology. Blood–brain barrier (BBB) integrity was analyzed by means of fluorescent dextran- as well as immunoglobulin G (IgG) extravasation, and neuroinflammatory processes were characterized both in vivo by positron emission tomography (PET) using [18F]DPA-714 and ex vivo using immunohistochemistry. While a single CBI resulted in a defined, subacute neuropsychiatric phenotype, longitudinal cognitive testing revealed a marked decrease in spatial cognition, most pronounced in mice subjected to CBI at high frequency (every 48 h). Functional deficits were correlated to a parallel disruption of the BBB, (R2 = 0.29, p < 0.01), even detectable by a significant increase in hippocampal uptake of [18F]DPA-714, which was not due to activation of microglia, as confirmed immunohistochemically. Featuring a mild but widespread disruption of the BBB without evidence of macroscopic damage, this model induces a characteristic neuro-psychiatric phenotype that correlates to the degree of BBB disruption. Based on these findings, the BBB may function as both a biomarker of CBI severity and as a potential treatment target to improve recovery from concussion.
  •  
25.
  • Bobinski, Lukas, 1977- (författare)
  • On evolution of intracranial changes after severe traumatic brain injury and its impact on clinical outcome
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Severe traumatic brain injury (sTBI) is a cause of death and disability worldwide and requires treatment at specialized neuro-intensive care units (NICU) with a multimodal monitoring approach. The CT scan imaging supports the monitoring and diagnostics. The level of S100B and neuron specific enolase (NSE) reflects the severity of the injury. The therapy resistant intracranial hypertension requires decompressive craniectomy (DC). After DC, the cranium must be reconstructed to recreate the normal intracranial physiology as well as to address cosmetic issues. The evolution of the pathological intracranial changes was analyzed in accordance with the three CT classifications: Marshall, Rotterdam and Morris-Marshall. The Rotterdam scale was best in describing the dynamics of the pathological evolution. Both the Rotterdam score and Morris- Marshall classification showed strong correlation with the clinical outcome, a finding that suggests that they could be used for prognostication. We demonstrated a clear correlation between the CT classifications and concentrations of S100B and NSE. The results revealed a concomitant correlation between NSE and S100B and clinical outcome. We found that the interaction between the ICP, Rotterdam CT classification, and concentrations of biochemical biomarkers are all associated with DC. We found a high percentage of complications following cranioplasty. Our results call into question whether custom-made allograft should be considered the best material for cranioplasty. It is concluded that both the Rotterdam and Morris-Marshall classification contribute to clinical evaluation of intracranial dynamics after sTBI, and might be used in combination with biochemical biomarkers for better assessment. The decision to perform DC should include a re-assesment of ICP evolution, CT scan images and concentration of the biochemical biomarkers. Furthermore, when determining whether DC treatment should be used, surgeon should also consider the risks of the following cranioplasty.
  •  
26.
  • Cederberg, David, et al. (författare)
  • Extreme intracranial pressure elevation > 90 mmHg in an awake patient with primary CNS lymphoma—case report
  • 2020
  • Ingår i: Acta Neurochirurgica. - : Springer Science and Business Media LLC. - 0001-6268 .- 0942-0940. ; 162:8, s. 1819-1823
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a patient with primary CNS lymphomas, awake despite an extreme ICP elevation. A 48-year-old woman presented with headache since 1 month, and bilateral papillary edema was observed. Magnetic resonance imaging revealed diffuse infiltration around the petrous bone. Following external ventricular drainage (EVD) placement, ICP levels of > 90 mmHg were recorded while the patient was fully awake. Cytology revealed an aggressive primary CNS lymphoma. Cerebrospinal fluid (CSF) drainage at high opening pressure levels was required. We conclude that extreme ICP elevations, treatable by CSF drainage, can be observed without a reduced level of consciousness.
  •  
27.
  • Cederberg, David, et al. (författare)
  • Prolonged and intense neuroinflammation after severe traumatic brain injury assessed by cerebral microdialysis with 300 kDa membranes
  • 2023
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 0165-5728. ; 377
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A neuroinflammatory response that may lead to edema and secondary brain damage is elicited in severe traumatic brain injury (TBI). Previous studies using microdialysis (MD) membranes with 100 k Dalton (kDa) cut-off found a transient intracerebral release of cytokines and chemokines without significant correlations to clinical course, intracranial pressure (ICP) or metabolites. In this study, a (300 kDa) MD probe was used to measure the levels of cytokines and chemokines in relation to ICP and metabolites. Methods: Seven patients with severe TBI received 2 MD catheters. In four patients sufficient dialysate could be retrieved for analysis from both catheters. MD samples were analyzed bedside, then frozen and analyzed for chemokines and cytokines using a multiplex assay (Mesoscale Discovery). Results: MD sampling was performed from 9 to 350 h. In total, 17 chemokines and cytokines were detected. Of these, IL-6, IL-8, IP-10, MCP-1 and MIP-1β were consistently elevated, and investigated further in relation to metabolites, and ICP. Levels of chemokines and cytokines were higher than previously reported from TBI patients, and partially higher than those reported in patients with cytokine release syndrome. There were no significant differences between the two catheters regarding cytokine/chemokine concentrations, except for IL-6 which was higher in the peri-contusional area. No correlation with metabolites and ICP was observed. No significant increase or decline of chemokine or cytokine secretion was observed during the study period. Conclusion: Our data suggest that cytokine and chemokine levels reflect a perpetual, potent and pan-cerebebral inflammatory response that persists beyond 15 days following TBI.
  •  
28.
  •  
29.
  • Clark, David, et al. (författare)
  • Management and outcomes following emergency surgery for traumatic brain injury – A multi-centre, international, prospective cohort study (the Global Neurotrauma Outcomes Study)
  • 2020
  • Ingår i: International Journal of Surgery Protocols. - : IJS Press. - 2468-3574. ; 20, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Traumatic brain injury (TBI) accounts for a significant amount of death and disability worldwide and the majority of this burden affects individuals in low-and-middle income countries. Despite this, considerable geographical differences have been reported in the care of TBI patients. On this background, we aim to provide a comprehensive international picture of the epidemiological characteristics, management and outcomes of patients undergoing emergency surgery for traumatic brain injury (TBI) worldwide. Methods and analysis: The Global Neurotrauma Outcomes Study (GNOS) is a multi-centre, international, prospective observational cohort study. Any unit performing emergency surgery for TBI worldwide will be eligible to participate. All TBI patients who receive emergency surgery in any given consecutive 30-day period beginning between 1st of November 2018 and 31st of December 2019 in a given participating unit will be included. Data will be collected via a secure online platform in anonymised form. The primary outcome measures for the study will be 14-day mortality (or survival to hospital discharge, whichever comes first). Final day of data collection for the primary outcome measure is February 13th. Secondary outcome measures include return to theatre and surgical site infection. Ethics and dissemination: This project will not affect clinical practice and has been classified as clinical audit following research ethics review. Access to source data will be made available to collaborators through national or international anonymised datasets on request and after review of the scientific validity of the proposed analysis by the central study team.
  •  
30.
  • Clausen, Fredrik, 1973-, et al. (författare)
  • Acute Inflammatory Biomarker Responses to Diffuse Traumatic Brain Injury in the Rat Monitored by a Novel Microdialysis Technique
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 36:2, s. 201-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation is a major contributor to the progressive brain injury process induced by traumatic brain injury (TBI), and may play an important role in the pathophysiology of axonal injury. The immediate neuroinflammatory cascade cannot be characterized in the human setting. Therefore, we used the midline fluid percussion injury model of diffuse TBI in rats and a novel microdialysis (MD) method providing stable diffusion-driven biomarker sampling. Immediately post-injury, bilateral amphiphilic tri-block polymer coated MD probes (100 kDa cut off membrane) were inserted and perfused with Dextran 500 kDa-supplemented artificial cerebrospinal fluid (CSF) to optimize protein capture. Six hourly samples were analyzed for 27 inflammatory biomarkers (9 chemokines, 13 cytokines, and 5 growth factors) using a commercial multiplex biomarker kit. TBI (n = 6) resulted in a significant increase compared with sham-injured controls (n = 6) for five chemokines (eotaxin/CCL11, fractalkine/CX3CL1, LIX/CXCL5, monocyte chemoattractant protein [MCP]1α/CCL2, macrophage inflammatory protein [MIP]1α /CCL3), 10 cytokines (interleukin [IL]-1α, IL-1β, IL-4, IL-6, IL-10, IL-13, IL-17α, IL-18, interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and four growth factors (epidermal growth factor [EGF], granulocyte-macrophage colony-stimulating factor [GM-CSF], leptin, vascular endothelial growth factor [VEGF]). Therefore, diffuse TBI was associated with an increased level of 18 of the 27 inflammatory biomarkers at one through six time points, during the observation period whereas the remaining 9 biomarkers were unaltered. The study shows that diffuse TBI induces an acute increase in a number of inflammatory biomarkers. The novel MD technique provides stable MD sampling suitable for further studies on the early neuroinflammatory cascade in TBI.
  •  
31.
  •  
32.
  • Clausen, Fredrik, et al. (författare)
  • Interstitial F2-Isoprostane 8-Iso-PGF2α As a Biomarker of Oxidative Stress after Severe Human Traumatic Brain Injury
  • 2012
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 29:5, s. 766-775
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is a major contributor to the secondary injury process after experimental traumatic brain injury (TBI). The importance of oxidative stress in the pathobiology of human TBI is largely unknown. The F(2)-isoprostane 8-iso-prostaglandin F(2α) (8-iso-PGF(2α)), synthesized in vivo through non-enzymatic free radical catalyzed peroxidation of arachidonic acid, is a widely used biomarker of oxidative stress in multiple disease states, including TBI and cerebral ischemia/reperfusion. Our hypothesis is that harvesting of biomarkers directly in the injured brain by cerebral microdialysis (MD) is advantageous because of its high spatial and temporal resolution compared to blood or cerebrospinal fluid sampling. The aim of this study was to test the feasibility of measuring 8-iso-PGF(2α) in MD, ventricular cerebrospinal fluid (vCSF), and plasma samples collected from patients with severe TBI, and to compare the MD signals with MD-glycerol, implicated as a biomarker of oxidative stress, as well as MD-glutamate, a biomarker of excitotoxicity. Six patients (4 men, 2 women) were included in the study, three of whom had a focal/mixed TBI, and three a diffuse axonal injury (DAI). Following the bedside analysis of routine MD biomarkers (glucose, lactate:pyruvate ratio, glycerol, and glutamate), two 12-h MD samples per day were used to analyze 8-iso-PGF(2α) from 24 h up to 8 days post-injury. The interstitial levels of 8-iso-PGF(2α) were markedly higher than the levels obtained from plasma and vCSF (p<0.05), supporting our hypothesis. The MD-8-iso-PGF(2α) levels correlated strongly (p<0.05) with MD-glycerol and MD-glutamate, which are widely used biomarkers of membrane phospholipid degradation/oxidative stress and excitotoxicity, respectively. This study demonstrates the feasibility of analyzing 8-iso-PGF(2α) in MD samples from the human brain. Our results support a close relationship between oxidative stress and excitotoxicity following human TBI. MD-8-iso-PGF(2α) in combination with MD-glycerol may be useful biomarkers of oxidative stress in the neurointensive care setting.
  •  
33.
  • Clausen, Fredrik, et al. (författare)
  • Intranasal Administration of the Antisecretory Peptide AF-16 Reduces Edema and Improves Cognitive Function Following Diffuse Traumatic Brain Injury in the Rat
  • 2017
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A synthetic peptide with antisecretory activity, antisecretory factor (AF)-16, improves injury-related deficits in water and ion transport and decreases intracranial pressure after experimental cold lesion injury and encephalitis although its role in traumatic brain injury (TBI) is unknown. AF-16 or an inactive reference peptide was administrated intranasally 30 min following midline fluid percussion injury (mFPI; n = 52), a model of diffuse mild-moderate TBI in rats. Sham-injured (n = 14) or naive (n = 24) animals were used as controls. The rats survived for either 48 h or 15 days post-injury. At 48 h, the animals were tested in the Morris water maze (MWM) for memory function and their brains analyzed for cerebral edema. Here, mFPI-induced brain edema compared to sham or naive controls that was significantly reduced by AF-16 treatment (p < 0.05) although MWM performance was not altered. In the 15-day survival groups, the MWM learning and memory abilities as well as histological changes were analyzed. AF-16-treated brain-injured animals shortened both MWM latency and swim path in the learning trials (p < 0.05) and improved probe trial performance compared to brain-injured controls treated with the inactive reference peptide. A modest decrease by AF-16 on TBI-induced changes in hippocampal glial acidic fibrillary protein (GFAP) staining (p = 0.11) was observed. AF-16 treatment did not alter any other immunohistochemical analyses (degenerating neurons, beta-amyloid precursor protein (beta-APP), and Olig2). In conclusion, intranasal AF-16-attenuated brain edema and enhanced visuospatial learning and memory following diffuse TBI in the rat. Intranasal administration early post-injury of a promising neuroprotective substance offers a novel treatment approach for TBI.
  •  
34.
  • Clausen, Fredrik, et al. (författare)
  • Neutralization of interleukin-1 beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice
  • 2011
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 34:1, s. 110-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence suggests that interleukin-1 beta (IL-1 beta) is a key mediator of the inflammatory response following traumatic brain injury (TBI). Recently, we showed that intracerebroventricular administration of an IL-1 beta-neutralizing antibody was neuroprotective following TBI in mice. In the present study, an anti-IL-1 beta antibody or control antibody was administered intraperitoneally following controlled cortical injury (CCI) TBI or sham injury in 105 mice and we extended our histological, immunological and behavioral analysis. First, we demonstrated that the treatment antibody reached target brain regions of brain-injured animals in high concentrations (> 11 nm) remaining up to 8 days post-TBI. At 48 h post-injury, the anti-IL-1b treatment attenuated the TBI-induced hemispheric edema (P < 0.05) but not the memory deficits evaluated using the Morris water maze (MWM). Neutralization of IL-1 beta did not influence the TBI-induced increases (P < 0.05) in the gene expression of the Ccl3 and Ccr2 chemokines, IL-6 or Gfap. Up to 20 days post-injury, neutralization of IL-1 beta was associated with improved visuospatial learning in the MWM, reduced loss of hemispheric tissue and attenuation of the microglial activation caused by TBI (P < 0.05). Motor function using the rotarod and cylinder tests was not affected by the anti-IL-1 beta treatment. Our results suggest an important negative role for IL-1 beta in TBI. The improved histological and behavioral outcome following anti-IL-1 beta treatment also implies that further exploration of IL-1 beta-neutralizing compounds as a treatment option for TBI patients is warranted.
  •  
35.
  • Clausen, Fredrik, et al. (författare)
  • Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice
  • 2009
  • Ingår i: European Journal of Neuroscience. - : Federation of European Neuroscience Societies and Blackwell Publishing Ltd. - 0953-816X .- 1460-9568. ; 30:3, s. 385-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-1beta (IL-1beta) may play a central role in the inflammatory response following traumatic brain injury (TBI). We subjected 91 mice to controlled cortical impact (CCI) brain injury or sham injury. Beginning 5 min post-injury, the IL-1beta neutralizing antibody IgG2a/k (1.5 microg/mL) or control antibody was infused at a rate of 0.25 microL/h into the contralateral ventricle for up to 14 days using osmotic minipumps. Neutrophil and T-cell infiltration and microglial activation was evaluated at days 1-7 post-injury. Cognition was assessed using Morris water maze, and motor function using rotarod and cylinder tests. Lesion volume and hemispheric tissue loss were evaluated at 18 days post-injury. Using this treatment strategy, cortical and hippocampal tissue levels of IgG2a/k reached 50 ng/mL, sufficient to effectively inhibit IL-1betain vitro. IL-1beta neutralization attenuated the CCI-induced cortical and hippocampal microglial activation (P < 0.05 at post-injury days 3 and 7), and cortical infiltration of neutrophils (P < 0.05 at post-injury day 7). There was only a minimal cortical infiltration of activated T-cells, attenuated by IL-1beta neutralization (P < 0.05 at post-injury day 7). CCI induced a significant deficit in neurological motor and cognitive function, and caused a loss of hemispheric tissue (P < 0.05). In brain-injured animals, IL-1beta neutralizing treatment resulted in reduced lesion volume, hemispheric tissue loss and attenuated cognitive deficits (P < 0.05) without influencing neurological motor function. Our results indicate that IL-1beta is a central component in the post-injury inflammatory response that, in view of the observed positive neuroprotective and cognitive effects, may be a suitable pharmacological target for the treatment of TBI.
  •  
36.
  •  
37.
  •  
38.
  • Clausen, Fredrik, et al. (författare)
  • The Fluid Percussion Injury Rodent Model in Preclinical Research on Traumatic Brain Injury
  • 2019
  • Ingår i: Animal Models of Neurotrauma. - New York, NY : Springer New York. - 0893-2336 .- 1940-6045. - 9781493997091 - 9781493997114 ; 149, s. 3-18
  • Bokkapitel (refereegranskat)abstract
    • There is still a lack of pharmacological treatment options for traumatic brain injury (TBI), the dominant cause of death and disability in persons under the age of 40 in the developed part of the world. Clinical TBI is a markedly complex disease, categorized into different subtypes that differ in their pathophysiology, treatment requirements, and long-term consequences. For successful development of novel treatment options, refined preclinical evaluation in rodent TBI models is mandatory. Since persisting cognitive deficits, impaired motor function, depression, and personality changes are common sequelae in TBI patients, preclinical models must produce clinically relevant behavioral deficits. Additionally, clinical TBI is a markedly heterogeneous disease with a severity span from immediately fatal to mild injuries with minor and passing symptoms. Ideally, a rodent TBI model should thus be adjustable in terms of injury severity. One of the most widely used rodent TBI model is the fluid percussion injury (FPI), which meets many of the criteria for a clinically relevant experimental model. The FPI technique relies on a fluid pressure pulse being transmitted into the skull cavity of the animal, allowing for a degree of brain displacement. By placing the craniectomy and the injury site either over the midline of the skull (the central FPI; cFPI) or over one hemisphere (the lateral FPI; lFPI) the injury shows either more diffuse (cFPI) or more focal (lFPI) characteristics. Although FPI has many advantages over other TBI models, including the possibility to vary important injury characteristics, the outcome after TBI may be influenced by other features such as gender, age, species, and even strain which should be considered in the design of the rodent models. In this chapter, we discuss the limitations and advantages, as well as the special considerations necessary when using the FPI model in rodents.
  •  
39.
  • Clausen, Fredrik, 1973-, et al. (författare)
  • The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat
  • 2008
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert, Inc.. - 0897-7151 .- 1557-9042. ; 25:12, s. 1449-1457
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive oxygen species (ROS) are important contributors to the secondary injury cascade following traumatic brain injury (TBI), and ROS inhibition has consistently been shown to be neuroprotective following experimental TBI. NXY-059, a nitrone free radical trapping compound, has been shown to be neuroprotective in models of ischemic stroke but has not been evaluated in experimental TBI. In the present study, a continuous 24-h intravenous infusion of NXY-059 or vehicle was initiated 30min following a severe lateral fluid percussion brain injury (FPI) in adult rats (n=22), and histological and behavioral outcomes were evaluated. Sham-injured animals (n=22) receiving identical drug infusion were used as controls. Visuospatial learning was evaluated in the Morris water maze at post-injury days 11–14, followed by a probe trial (memory test) at day 18. The animals were sacrificed at day 18, and loss of hemispheric brain tissue was measured in microtubule-associated protein (MAP)–2stained sections. Brain-injured, NXY-059-treated animals showed a significant reduction of visuospatial learning deficits when compared to the brain-injured, vehicle-treated control animals (p<0.05). NXY-059-treated animals significantly reduced the loss of hemispheric tissue compared to brain-injured controls (43.0±11mm3 versus 74.4±19mm3, respectively; p<0.01). The results show that post-injury treatment with NXY-059 significantly attenuated the loss of injured brain tissue and improved cognitive outcome, suggesting a major role for ROS in the pathophysiology of TBI.
  •  
40.
  • Conte, Valeria, et al. (författare)
  • TrkB gene transfer does not alter hippocampal neuronal loss and cognitive deficits following traumatic brain injury in mice
  • 2008
  • Ingår i: Restorative Neurology and Neuroscience. - 0922-6028 .- 1878-3627. ; 26:1, s. 45-56
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The ability of brain-derived neurotrophic factor (BDNF) to attenuate secondary damage and influence behavioral outcome after experimental traumatic brain injury (TBI) remains controversial. Because TBI can result in decreased expression of the trkB receptor, thereby preventing BDNF from exerting potential neuroprotective effects, the contribution of both BDNF and its receptor trkB to hippocampal neuronal loss and cognitive dysfunction were evaluated. METHODS: Full-length trkB was overexpressed in the left hippocampus of adult C57Bl/6 mice using recombinant adeno-associated virus serotype 2/5 (rAAV 2/5). EGFP (enhanced green fluorescent protein) expression was present at two weeks after AAV-EGFP injection and remained sustained up to four weeks after the injection. At 2 weeks following gene transduction, mice were subjected to parasagittal controlled cortical impact (CCI) brain injury, followed by either BDNF or PBS infusion into the hippocampus. RESULTS: No differences were observed in learning ability at two weeks post-injury or in motor function from 48 hours to two weeks among treatment groups. The number of surviving pyramidal neurons in the CA2-CA3 region of the hippocampus was also not different among treatment groups. CONCLUSIONS: These data suggest that neither overexpression of trkB, BNDF infusion or their combination affects neuronal survival or behavioral outcome following experimental TBI in mice.
  •  
41.
  • Demetriades, Andreas K., et al. (författare)
  • Sport-related concussion in soccer –a scoping review of available guidelines and a call for action to FIFA & soccer governing bodies
  • 2024
  • Ingår i: Brain and Spine. - 2772-5294. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Sport-related concussions (SRC) have been a concern in all sports, including soccer. The long-term effects of soccer-related head injuries are a public health concern. The Concussion in Sport Group (CISG) released a consensus statement in 2017 and several soccer governing associations have published their own SRC guidelines while referring to it but it is unclear whether this has been universally adopted. Research question: We aimed to investigate whether guidelines published by soccer associations have any discrepancies; and the extent to which they follow the CISG recommendations. Materials and methods: A scoping review of available soccer-specific SRC guidelines was performed via databases PubMed, Google Scholar, and official soccer association websites via web browser Google. The inclusion criteria were soccer-specific SRC guidelines. Comparisons between guidelines were made concerning the following index items: initial (on-site) assessment, removal from play, re-evaluation with neuroimaging, return-to-sport protocol, special populations, and education. Results: Nine soccer associations with available guidelines were included in this review. Guidelines obtained were from official associations in the United Kingdom, United States of America, Canada, Australia, and New Zealand. When compared to each other and the CISG recommendations, discrepancies were found within guidelines regarding the index items. Additionally, major soccer associations in some countries famous for soccer were found to have not published any publicly available guidelines. Discussion and conclusion: SRC guidelines from different soccer associations contain discrepancies which may be detrimental to athletes, both short and long-term. We recommend that all major soccer governing associations publish guidelines that are standardised and accessible to all athletes.
  •  
42.
  • Drake, Mattias, et al. (författare)
  • Swedish trial on embolization of middle meningeal artery versus surgical evacuation in chronic subdural hematoma (SWEMMA)—a national 12-month multi-center randomized controlled superiority trial with parallel group assignment, open treatment allocation and blinded clinical outcome assessment
  • 2022
  • Ingår i: Trials. - : Springer Science and Business Media LLC. - 1745-6215. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Chronic subdural hematoma (cSDH) is one of the most common neurosurgical disorders and the incidence is rising. The routine treatment is neurosurgical hematoma evacuation, which is associated with recurrence rates up to 10–25%. In recent years, endovascular embolization of the middle meningeal artery (eMMA) has garnered much attention due to recurrence rates as low as < 5%. Several randomized controlled trials are planned or ongoing. In most of these trials, conventional neurosurgical treatment with or without adjunctive endovascular embolization is compared. The proposed trial aims to conduct a head-to-head comparison between neurosurgical and endovascular treatment as stand-alone treatments. Methods: The trial is academically driven and funded within existing public healthcare systems and infrastructure. Patients with uni- or bilateral cSDH, presenting with mild-to moderate symptoms, and admitted to neurosurgery on clinical grounds will be offered participation. Subjects are randomized 1:1 between conventional neurosurgical treatment (control) and endovascular embolization of the middle meningeal artery (intervention). Primary endpoint is reoperation due to clinically and/or radiologically significant recurrence within 3 months. Secondary endpoints include safety, technical success rate, neurological disability, and quality of life. Discussion: There are mounting retrospective data suggesting eMMA, as sole treatment or as an adjunctive to neurosurgery for cSDH, is safe and effective with a reoperation rate lower than neurosurgical hematoma evacuation alone. If randomized controlled trials confirm these findings, there is a potential for a paradigm shift in the treatment of cSDH where a minimally invasive procedure can replace open surgery in a large and oftentimes old and fragile patient cohort. Trial registration: ClinicalTrials.gov, ClinicalTrials.gov Identifier NCT05267184. Registered March 4, 2022.
  •  
43.
  •  
44.
  • Eeg-Olofsson, Orvar, et al. (författare)
  • Duchenne muscular dystrophy and idiopathic hyperCKemia in the same family
  • 2008
  • Ingår i: European journal of paediatric neurology. - : Elsevier BV. - 1090-3798 .- 1532-2130. ; 12:5, s. 404-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial hyperCKemia is a rare condition, and a combination with Duchenne muscular dystrophy (DMD) is extremely rare. A boy showed muscle weakness from the age of 10 months and presented typical signs of DMD at the age of 18 months. The diagnosis was supported by markedly elevated serum creatine kinase (CK) value as well as by neurophysiological and muscle biopsy findings at the age of 23 months. The diagnosis was confirmed by identification of a stop codon in exon 43 (p.2095Arg>X) of the dystrophin gene. Interestingly, the father and his near relatives had increased serum CK values without any clinical symptoms or signs, nor a defect in caveolin-3 gene. We suggest that the occurrence of familial hyperCKemia may have triggered the early onset of symptoms in our patient.
  •  
45.
  • Ekmark Lewén, Sara, 1978- (författare)
  • Cellular Reactions and Behavioral Changes in Focal and Diffuse Traumatic Brain Injury : A Study in the Rat and Mouse
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Traumatic brain injury (TBI) is a severe condition and a major cause of death and disability. There is no pharmacological treatment available in clinical practice today and knowledge of brain injury mechanisms is of importance for development of neuroprotective drugs. The aims of the thesis were to get a better understanding of astrocyte reactions and immune responses, as well as behavioral changes after focal unilateral cortical contusion injury and diffuse bilateral central fluid percussion injury in rats and mice.In the focal injury models, the astrocyte reactions were generally restricted to the ipsilateral hemisphere. After diffuse TBI, vimentin and glial fibrillary acidic protein (GFAP) positive reactive astrocytes were bilaterally expressed in brain regions even distant from the injury site, including regions where axonal injury was seen. Early after diffuse TBI, there was a robust immune response, including activation of macrophages/microglia (Mac-2+) and infiltration of neutrophils (GR-1+) and T-cells (CD3+).In order to measure functional outcome, the recently established Multivariate Concentric Square Field™ (MCSF) test for complex behaviors, including risk taking and explorative strategies was used. The Morris water maze (MWM) was applied for testing learning and memory. The MCSF test revealed alterations in risk taking, risk assessment and exploratory behavior, in the mice subjected to focal injury whereas mice subjected to the diffuse injury showed a deviant stereotyped behavior. After focal injury mice showed a decreased ability to adapt to the arena in the second trial, when tested repeatedly in the MCSF test. Mice subjected to diffuse injury had an impaired memory but not learning, in the MWM test. Post-injury treatment with the anti-inflammatory anti-interleukin-1β (IgG2 a/k) antibody showed a positive effect on functional outcome in the diffuse injury model. Altogether, the results demonstrate that focal and diffuse TBI models produce differences in cellular reactions and behavioral outcome and that the immune response plays a key role in the pathology after brain injury. 
  •  
46.
  • Ekmark-Lewén, Sara, et al. (författare)
  • Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β
  • 2016
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 43:8, s. 1016-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1 has not been established in TAI. An IL-1-neutralizing or a control antibody was administered intraperitoneally at 30min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n=41) were compared with sham-injured controls (n=20) and untreated, naive mice (n=9). The anti-IL-1 antibody reached the target brain regions in adequate therapeutic concentrations (up to similar to 30g/brain tissue) at 24h post-injury in both cFPI (n=5) and sham-injured (n=3) mice, with lower concentrations at 72h post-injury (up to similar to 18g/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9days post-injury, and the Morris water maze (MWM) at 14-21days post-injury. Following TAI, the IL-1-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1 is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI.
  •  
47.
  •  
48.
  • Ekmark-Lewén, Sara, et al. (författare)
  • Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes
  • 2013
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 10:1, s. 44-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDiffuse traumatic axonal injury (TAI), a common consequence of traumatic brain injury, is associated with high morbidity and mortality. Inflammatory processes may play an important role in the pathophysiology of TAI. In the murine central fluid percussion injury (cFPI) TAI model, the neuroinflammatory and astroglial response and behavioral changes are unknown.MethodsTwenty cFPI-injured and nine sham-injured mice were used, and the neuroinflammatory and astroglial response was evaluated by immunohistochemistry at 1, 3 and 7 days post-injury. The multivariate concentric square field test (MCSF) was used to compare complex behavioral changes in mice subjected to cFPI (n = 16) or sham injury (n = 10). Data was analyzed using non-parametric statistics and principal component analysis (MCSF data).ResultsAt all post-injury time points, beta-amyloid precursor protein (beta-APP) immunoreactivity revealed widespread bilateral axonal injury and IgG immunostaining showed increased blood--brain barrier permeability. Using vimentin and glial fibrillary acidic protein (GFAP) immunohistochemistry, glial cell reactivity was observed in cortical regions and important white matter tracts peaking at three days post-injury. Only vimentin was increased post-injury in the internal capsule and only GFAP in the thalamus. Compared to sham-injured controls, an increased number of activated microglia (MAC-2), infiltrating neutrophils (GR-1) and T-cells (CD3) appearing one day after TAI (P<0.05 for all cell types) was observed in subcortical white matter. In the MCSF, the behavioral patterns including general activity and exploratory behavior differed between cFPI mice and sham-injured controls.ConclusionsTraumatic axonal injury in mice resulted in marked bilateral astroglial and neuroinflammatory responses and complex behavioral changes. The cFPI model in mice appears suitable for the study of injury mechanisms, including neuroinflammation, and the development of treatments targeting traumatic axonal injury.
  •  
49.
  • Erickson, Andrew, et al. (författare)
  • The spatial landscape of clonal somatic mutations in benign and malignant tissue
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Defining the transition from benign to malignant tissue is fundamental to improve early diagnosis of cancer. Here, we provide an unsupervised approach to study spatial genome integrity in situ to gain molecular insight into clonal relationships. We employed spatially resolved transcriptomics to infer spatial copy number variations in >120 000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of an unsupervised approach to capture the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 217
Typ av publikation
tidskriftsartikel (172)
forskningsöversikt (12)
annan publikation (11)
doktorsavhandling (10)
konferensbidrag (8)
bokkapitel (2)
visa fler...
rapport (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (180)
övrigt vetenskapligt/konstnärligt (36)
populärvet., debatt m.m. (1)
Författare/redaktör
Marklund, Niklas (184)
Hillered, Lars (33)
Clausen, Fredrik (26)
Enblad, Per (25)
Abu Hamdeh, Sami (13)
Hånell, Anders (13)
visa fler...
Tobieson, Lovisa (12)
Flygt, Johanna (12)
Lewén, Anders (10)
Ruscher, Karsten (9)
Tegner, Yelverton (8)
Bakalkin, Georgy (8)
Gard, Anna (8)
Helleday, Thomas (7)
Lundeberg, Joakim (7)
Tegner, Yelverton, P ... (7)
Blennow, Kaj (7)
Schultz, Niklas (7)
Fahlström, Markus (7)
Zetterberg, Henrik (7)
Johansson, Jakob (7)
Watanabe, Hiroyuki (7)
Berglund, Emelie (7)
Marklund, Maja (7)
Tanoglidi, Anna (7)
Antoni, Gunnar (6)
Sarkisyan, Daniil (6)
Ronne-Engström, Elis ... (6)
Larsson, Elna-Marie (6)
Alafuzoff, Irina (5)
Hillered, Lars, 1952 ... (5)
Marklund, Pär (5)
Maaskola, Jonas (5)
Kononenko, Olga (5)
Bartley, Andreas (5)
Tarish, Firas (5)
Salci, Konstantin (5)
Blennow, Kaj, 1958 (4)
Zetterberg, Henrik, ... (4)
Ingelsson, Martin (4)
Wall, Anders (4)
Holtz, Anders (4)
Larsson, Ludvig (4)
Björk, Maria (4)
Höglund, Erik (4)
McIntosh, TK (4)
Hutchinson, Peter (4)
McIntosh, T K (4)
Skoglund, Karin, 196 ... (4)
Cederberg, David (4)
visa färre...
Lärosäte
Uppsala universitet (154)
Lunds universitet (76)
Luleå tekniska universitet (22)
Göteborgs universitet (18)
Karolinska Institutet (18)
Linköpings universitet (13)
visa fler...
Umeå universitet (9)
Kungliga Tekniska Högskolan (7)
Mälardalens universitet (7)
Örebro universitet (6)
Stockholms universitet (3)
RISE (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (210)
Svenska (4)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (148)
Teknik (11)
Naturvetenskap (10)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy