SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marko Varga Gyorgy) "

Sökning: WFRF:(Marko Varga Gyorgy)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adhikari, Subash, et al. (författare)
  • A high-stringency blueprint of the human proteome
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
  •  
2.
  • Betancourt, Lázaro H., et al. (författare)
  • Targeting the hydrophilic regions of recombinant proteins by MS via in-solution buffer-free trypsin digestion
  • 2020
  • Ingår i: European Journal of Mass Spectrometry. - : SAGE Publications. - 1469-0667 .- 1751-6838. ; 26:3, s. 230-237
  • Tidskriftsartikel (refereegranskat)abstract
    • A desalting step using reversed phase chromatography is a common practice prior to mass spectrometry analysis of proteolytic digests in spite of the detrimental exclusion of the hydrophilic peptides. The detection of such peptides is also important for the complete coverage of protein sequences and the analysis of posttranslational modifications as inquired by regulatory agencies for the commercialization of biotechnological products. The procedure described here, named in-solution buffer-free digestion, simplifies the sample processing and circumvents the above-mentioned limitations by allowing the detection of tryptic hydrophilic peptides via direct ESI-MS analysis. Two DNA recombinant proteins such as HBcAg (hepatitis B core antigen) and fusion VEGF (vascular endothelial growth factor) were analyzed with the proposed in-solution buffer-free digestion allowing the detection of extremely hydrophilic di-, tri- and tetra-peptides, C-terminal His-tail peptide, as well as disulfide-containing peptides. All these molecular species are hardly seen in mass spectrometric analysis using a standard digestion that includes a C18-desalting step. The procedure was also successfully tried on hydrophilic tetra- and hexa-peptides of Ribonuclease B carrying an N-glycosylation site occupied with “high-mannose” N-glycan chains. The in-solution buffer-free digestion constitutes a simple and straightforward approach to analyse the hydrophilic proteolytic peptides which are commonly elusive to the detection by conventional mass spectrometric analysis.
  •  
3.
  • Brandsma, Corry Anke, et al. (författare)
  • Integrated proteogenomic approach identifying a protein signature of COPD and a new splice variant of SORBS1
  • 2020
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 75:2, s. 180-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Translation of genomic alterations to protein changes in chronic obstructive pulmonary disease (COPD) is largely unexplored. Using integrated proteomic and RNA sequencing analysis of COPD and control lung tissues, we identified a protein signature in COPD characterised by extracellular matrix changes and a potential regulatory role for SUMO2. Furthermore, we identified 61 differentially expressed novel, non-reference, peptides in COPD compared with control lungs. This included two peptides encoding for a new splice variant of SORBS1, of which the transcript usage was higher in COPD compared with control lungs. These explorative findings and integrative proteogenomic approach open new avenues to further unravel the pathology of COPD.
  •  
4.
  • Cho, Sung Min, et al. (författare)
  • Development of Novel VEGFR2 Inhibitors Originating from Natural Product Analogues with Antiangiogenic Impact
  • 2021
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 64:21, s. 15858-15867
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel natural small molecule, voacangine (Voa), has been discovered as a potent antiangiogenic compound. Notably, Voa directly binds the kinase domain of the vascular endothelial growth factor receptor 2 (VEGFR2) and thereby inhibits downstream signaling. Herein, we developed synthetic small molecules based on the unique chemical structure of Voa that directly and specifically target and modulate the kinase activity of VEGFR2. Among these Voa structure analogues, Voa analogue 19 (V19) exhibited increased antiangiogenic potency against VEGF-induced VEGFR2 phosphorylation without cytotoxic effects. Moreover, treatment with V19 resulted in significant tumor cell death in a mouse xenograft model. In conclusion, this new VEGFR2 modulator, inspired from the rigid scaffold of a natural compound, Voa, is presented as a potent candidate in the development of new antiangiogenic agents.
  •  
5.
  • Eriksson, Jonatan O., et al. (författare)
  • Clusterwise Peak Detection and Filtering Based on Spatial Distribution to Efficiently Mine Mass Spectrometry Imaging Data
  • 2019
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; , s. 11888-11896
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry imaging (MSI) has the potential to reveal the localization of thousands of biomolecules such as metabolites and lipids in tissue sections. The increase in both mass and spatial resolution of today's instruments brings on considerable challenges in terms of data processing; accurately extracting meaningful signals from the large data sets generated by MSI without losing information that could be clinically relevant is one of the most fundamental tasks of analysis software. Ion images of the biomolecules are generated by visualizing their intensities in 2-D space using mass spectra collected across the tissue section. The intensities are often calculated by summing each compound's signal between predefined sets of borders (bins) in the m/z dimension. This approach, however, can result in mixed signals from different compounds in the same bin or splitting the signal from one compound between two adjacent bins, leading to low quality ion images. To remedy this problem, we propose a novel data processing approach. Our approach consists of a sensitive peak detection method able to discover both faint and localized signals by utilizing clusterwise kernel density estimates (KDEs) of peak distributions. We show that our method can recall more ground-truth molecules, molecule fragments, and isotopes than existing methods based on binning. Furthermore, it automatically detects previously reported molecular ions of lipids, including those close in m/z, in an experimental data set.
  •  
6.
  • Hwang, Hui Yun, et al. (författare)
  • Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry
  • 2020
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 20:9
  • Forskningsöversikt (refereegranskat)abstract
    • Identifying the target proteins of bioactive small molecules is a key step in understanding mode-of-action of the drug and addressing the underlying mechanisms responsible for a particular phenotype. Proteomics has been successfully used to elucidate the target protein profiles of unmodified and ligand-modified bioactive small molecules. In the latter approach, compounds can be modified via click chemistry and combined with activity-based protein profiling. Target proteins are then enriched by performing a pull-down with the modified ligand. Methods that utilize unmodified bioactive small molecules include the cellular thermal shift assay, thermal proteome profiling, stability of proteins from rates of oxidation, and the drug affinity responsive target stability (DARTS) determination (or read-out). This review highlights recent proteomic approaches utilizing data-dependent analysis and data-independent analysis to identify target proteins by DARTS. When combined with liquid chromatography/tandem mass spectrometry, DARTS enables the identification of proteins that bind to drug molecules that leads to a conformational change in the target protein(s). In addition, an effective strategy is proposed for selecting the target protein(s) from within the pool of analyzed candidates. With additional complementary methods, the biologically relevant target proteins that bind to the small bio-active molecules can be further validated.
  •  
7.
  • Indira Chandran, Vineesh, et al. (författare)
  • Global extracellular vesicle proteomic signature defines U87-MG glioma cell hypoxic status with potential implications for non-invasive diagnostics
  • 2019
  • Ingår i: Journal of Neuro-Oncology. - : SPRINGER. - 0167-594X .- 1573-7373. ; 144:3, s. 477-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Glioblastoma multiforme (GBM) is the most common and lethal of primary malignant brain tumors. Hypoxia constitutes a major determining factor for the poor prognosis of high-grade glioma patients, and is known to contribute to the development of treatment resistance. Therefore, new strategies to comprehensively profile and monitor the hypoxic status of gliomas are of high clinical relevance. Here, we have explored how the proteome of secreted extracellular vesicles (EVs) at the global level may reflect hypoxic glioma cells. Methods We have employed shotgun proteomics and label free quantification to profile EVs isolated from human high-grade glioma U87-MG cells cultured at normoxia or hypoxia. Parallel reaction monitoring was used to quantify the identified, hypoxia-associated EV proteins. To determine the potential biological significance of hypoxia-associated proteins, the cumulative Z score of identified EV proteins was compared with GBM subtypes from HGCC and TCGA databases. Results In total, 2928 proteins were identified in EVs, out of which 1654 proteins overlapped with the ExoCarta EV-specific database. We found 1034 proteins in EVs that were unique to the hypoxic status of U87-MG cells. We subsequently identified an EV protein signature, "HYPSIGNATURE", encompassing nine proteins that strongly represented the hypoxic situation and exhibited close proximity to the mesenchymal GBM subtype. Conclusions We propose, for the first time, an EV protein signature that could comprehensively reflect the hypoxic status of high-grade glioma cells. The presented data provide proof-of-concept for targeted proteomic profiling of glioma derived EVs, which should motivate future studies exploring its utility in non-invasive diagnosis and monitoring of brain tumor patients.
  •  
8.
  • Indira Chandran, Vineesh, et al. (författare)
  • Ultrasensitive Immunoprofiling of Plasma Extracellular Vesicles Identifies Syndecan-1 as a Potential Tool for Minimally Invasive Diagnosis of Glioma
  • 2019
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 25:10, s. 3115-3127
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Liquid biopsy has great potential to improve the management of brain tumor patients at high risk of surgery-associated complications. Here, the aim was to explore plasma extracellular vesicle (plEV) immunoprofiling as a tool for noninvasive diagnosis of glioma.Experimental Design: PlEV isolation and analysis were optimized using advanced mass spectrometry, nanoparticle tracking analysis, and electron microscopy. We then established a new procedure that combines size exclusion chromatography isolation and proximity extension assay-based ultrasensitive immunoprofiling of plEV proteins that was applied on a well-defined glioma study cohort (n = 82).Results: Among potential candidates, we for the first time identify syndecan-1 (SDC1) as a plEV constituent that can discriminate between high-grade glioblastoma multiforme (GBM, WHO grade IV) and low-grade glioma [LGG, WHO grade II; area under the ROC curve (AUC): 0.81; sensitivity: 71%; specificity: 91%]. These findings were independently validated by ELISA. Tumor SDC1 mRNA expression similarly discriminated between GBM and LGG in an independent glioma patient population from The Cancer Genome Atlas cohort (AUC: 0.91; sensitivity: 79%; specificity: 91%). In experimental studies with GBM cells, we show that SDC1 is efficiently sorted to secreted EVs. Importantly, we found strong support of plEVSDC1 originating from GBM tumors, as plEVSDC1 correlated with SDC1 protein expression in matched patient tumors, and plEVSDC1 was decreased postoperatively depending on the extent of surgery.Conclusions: Our studies support the concept of circulating plEVs as a tool for noninvasive diagnosis and monitoring of gliomas and should move this field closer to the goal of improving the management of cancer patients.
  •  
9.
  • Kelemen, Olga, et al. (författare)
  • Proteomic analysis enables distinction of early- versus advanced-stage lung adenocarcinomas
  • 2020
  • Ingår i: Clinical and Translational Medicine. - : Wiley. - 2001-1326. ; 10:2, s. 106-106
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A gel-free proteomic approach was utilized to perform in-depth tissue protein profiling of lung adenocarcinoma (ADC) and normal lung tissues from early and advanced stages of the disease. The long-term goal of this study is to generate a large-scale, label-free proteomics dataset from histologically well-classified lung ADC that can be used to increase further our understanding of disease progression and aid in identifying novel biomarkers.METHODS AND RESULTS: Cases of early-stage (I-II) and advanced-stage (III-IV) lung ADCs were selected and paired with normal lung tissues from 22 patients. The histologically and clinically stratified human primary lung ADCs were analyzed by liquid chromatography-tandem mass spectrometry. From the analysis of ADC and normal specimens, 4863 protein groups were identified. To examine the protein expression profile of ADC, a peak area-based quantitation method was used. In early- and advanced-stage ADC, 365 and 366 proteins were differentially expressed, respectively, between normal and tumor tissues (adjusted P-value < .01, fold change ≥ 4). A total of 155 proteins were dysregulated between early- and advanced-stage ADCs and 18 were suggested as early-specific stage ADC. In silico functional analysis of the upregulated proteins in both tumor groups revealed that most of the enriched pathways are involved in mRNA metabolism. Furthermore, the most overrepresented pathways in the proteins that were unique to ADC are related to mRNA metabolic processes.CONCLUSIONS: Further analysis of these data may provide an insight into the molecular pathways involved in disease etiology and may lead to the identification of biomarker candidates and potential targets for therapy. Our study provides potential diagnostic biomarkers for lung ADC and novel stage-specific drug targets for rational intervention.
  •  
10.
  • Kim, Tae Young, et al. (författare)
  • Dna polymerase alpha subunit b is a binding protein for erlotinib resistance in non-small cell lung cancer
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:9, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Erlotinib inhibits epithelial growth factor receptor (EGFR) kinase activity and is used to treat non-small cell lung cancer (NSCLC). Despite its high efficacy, recurrence can occur in patients who become resistant to the drug. To address the underlying mechanism of Erlotinib resistance, we investigated additional mechanisms related to mode-of-drug-action, by multiple protein-binding interactions, besides EGFR by using drug affinity responsive target stability (DARTS) and liquid chromatography-mass spectrometry (LC-MS/MS) methods with non-labeled Erlotinib. DNA polymerase alpha subunit B (POLA2) was identified as a new Erlotinib binding protein that was validated by the DARTS platform, complemented with cellular thermal shift assays. Genetic knock-down of POLA2 promoted the anti-proliferative effect of the drug in the Erlotinib-resistant cell line H1299 with high POLA2 expression, whereas the overexpression of POLA2 restored anti-proliferative effects in the Erlotinib-sensitive cell line HCC827 with low POLA2 expression. Importantly, POLA2 expression levels in four NSCLC cell lines were positively correlated with anti-proliferative Erlotinib efficacy (Pearson correlation coefficient, R = 0.9886). These results suggest that POLA2 is a novel complementary target protein of Erlotinib, and could clinically provide validity as a surrogate marker for drug resistance in patients with NSCLC.
  •  
11.
  •  
12.
  • Kuras, Magdalena, et al. (författare)
  • Assessing Automated Sample Preparation Technologies for High-Throughput Proteomics of Frozen Well Characterized Tissues from Swedish Biobanks
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:1, s. 548-556
  • Tidskriftsartikel (refereegranskat)abstract
    • Large cohorts of carefully collected clinical tissue materials play a central role in acquiring sufficient depth and statistical power to discover disease-related mechanisms and biomarkers of clinical significance. Manual preparation of such large sample cohorts requires experienced laboratory personnel. This carries other possible downsides such as low throughput, high risk of errors, and low reproducibility. In this work, three automated technologies for high-throughput proteomics of frozen sectioned tissues were compared. The instruments evaluated included the Bioruptor for tissue disruption and protein extraction; the Barocycler, which is able to disrupt tissues and digest the proteins; and the AssayMAP Bravo, a microchromatography platform for protein digestion, peptide desalting, and fractionation. Wide varieties of tissue samples from rat spleen, malignant melanoma, and pancreatic tumors were used for the assessment. The three instruments displayed reproducible and consistent results, as was proven by high correlations and low coefficients of variation between technical replicates and even more importantly, between replicates that were processed in different batches or at different time points. The results from this study allowed us to integrate these technologies into an automated sample preparation workflow for large-scale proteomic studies that are currently ongoing. Data are available via ProteomeXchange with identifiers PXD010296 and PXD011295.
  •  
13.
  • Kuras, Magdalena, et al. (författare)
  • Proteomic Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples from Formalin-Fixed Paraffin-Embedded Archives
  • 2021
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 20:1, s. 1027-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Well-characterized archival formalin-fixed paraffin-embedded (FFPE) tissues are of much value for prospective biomarker discovery studies, and protocols that offer high throughput and good reproducibility are essential in proteomics. Therefore, we implemented efficient paraffin removal and protein extraction from FFPE tissues followed by an optimized two-enzyme digestion using suspension trapping (S-Trap). The protocol was then combined with TMTpro 16plex labeling and applied to lung adenocarcinoma patient samples. In total, 9585 proteins were identified, and proteins related to the clinical outcome were detected. Because acetylation is known to play a major role in cancer development, a fast on-trap acetylation protocol was developed for studying endogenous lysine acetylation, which allows identification and localization of the lysine acetylation together with quantitative comparison between samples. We demonstrated that FFPE tissues are equivalent to frozen tissues to study the degree of acetylation between patients. In summary, we present a reproducible sample preparation workflow optimized for FFPE tissues that resolves known proteomic-related challenges. We demonstrate compatibility of the S-Trap with isobaric labeling and for the first time, we prove that it is feasible to study endogenous lysine acetylation stoichiometry in FFPE tissues, contributing to better utility of the existing global tissue archives. The MS proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifiers PXD020157, PXD021986, and PXD021964.
  •  
14.
  • Megyesfalvi, Zsolt, et al. (författare)
  • Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small-cell lung cancer : an international multicenter study
  • 2022
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417 .- 1096-9896. ; 257:5, s. 674-686
  • Tidskriftsartikel (refereegranskat)abstract
    • The tissue distribution and prognostic relevance of subtype-specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small-cell lung cancer (SCLC). The expression of subtype-specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype-specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC-A (ASCL1-dominant), SCLC-AN (combined ASCL1/NEUROD1), SCLC-N (NEUROD1-dominant), and SCLC-P (POU2F3-dominant), IHC and cluster analyses identified a quadruple-negative SCLC subtype (SCLC-QN). No unique YAP1-subtype was found. The highest overall survival rates were associated with non-neuroendocrine subtypes (SCLC-P and SCLC-QN) and the lowest with neuroendocrine subtypes (SCLC-A, SCLC-N, SCLC-AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard-of-care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype-specific protein abundances. In conclusion, we investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes. No YAP1-subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines revealed distinct vulnerability profiles defined by transcription regulators.
  •  
15.
  • Megyesfalvi, Zsolt, et al. (författare)
  • Unfolding the secrets of small cell lung cancer progression : Novel approaches and insights through rapid autopsies
  • 2023
  • Ingår i: Cancer Cell. - 1535-6108. ; 41:9, s. 1535-1540
  • Tidskriftsartikel (refereegranskat)abstract
    • The understanding of small cell lung cancer (SCLC) biology has increased dramatically in recent years, but the processes that allow SCLC to progress rapidly remain poorly understood. Here, we advocate the integration of rapid autopsies and preclinical models into SCLC research as a comprehensive strategy with the potential to revolutionize current treatment paradigms.
  •  
16.
  • Murillo, Jimmy Rodriguez, et al. (författare)
  • Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • To acquire a deeper understanding of malignant melanoma (MM), it is essential to study the proteome of patient tissues. In particular, phosphoproteomics of MM has become of significant importance because of the central role that phosphorylation plays in the development of MM. Investigating clinical samples, however, is an extremely challenging task as there is usually only very limited quantities of material available to perform targeted enrichment approaches. Here, an automated phosphopeptide enrichment protocol using the AssayMap Bravo platform was applied to MM tissues and assessed for performance. The strategy proved to be highly-sensitive, less prone to variability, less laborious than existing techniques and adequate for starting quantities at the microgram level. An Fe(III)-NTA-IMAC-based enrichment workflow was applied to a dilution series of MM tissue lysates. The workflow was efficient in terms of sensitivity, reproducibility and phosphosite localization; and from only 12.5 μg of sample, more than 1,000 phosphopeptides were identified. In addition, from 60 μg of protein material the number of identified phosphoproteins from individual MM samples was comparable to previous reports that used extensive fractionation methods. Our data set included key pathways that are involved in MM progression; such as MAPK, melanocyte development and integrin signaling. Moreover, tissue-specific immunological proteins were identified, that have not been previously observed in the proteome of MM-derived cell lines. In conclusion, this workflow is suitable to study large cohorts of clinical samples that demand automatic and careful handling.
  •  
17.
  • Nishimura, Toshihide, et al. (författare)
  • Protein co-expression network-based profiles revealed from laser-microdissected cancerous cells of lung squamous-cell carcinomas
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • No therapeutic targets have been identified for lung squamous cell cancer (SqCC) which is the second most prevalent lung cancer because its molecular profiles remain unclear. This study aimed to unveil disease-related protein networks by proteomic and bioinformatic assessment of laser-microdissected cancerous cells from seven SqCCs compared with eight representative lung adenocarcinomas. We identified three network modules significant to lung SqCC using weighted gene co-expression network analysis. One module was intrinsically annotated to keratinization and cell proliferation of SqCC, accompanied by hypoxia-induced aerobic glycolysis, in which key regulators were activated (HIF1A, ROCK2, EFNA1-5) and highly suppressed (KMT2D). The other two modules were significant for translational initiation, nonsense-mediated mRNA decay, inhibited cell death, and interestingly, eIF2 signaling, in which key regulators, MYC and MLXIPL, were highly activated. Another key regulator LARP1, the master regulator in cap-dependent translation, was highly suppressed although upregulations were observed for hub proteins including EIF3F and LARP1 targeted ribosomal proteins, among which PS25 is the key ribosomal protein in IRES-dependent translation. Our results suggest an underlying progression mechanism largely caused by switching to the cap-independent, IRES-dependent translation of mRNA subsets encoding oncogenic proteins. Our findings may help to develop therapeutic strategies to improve patient outcomes.
  •  
18.
  • Schwendenwein, Anna, et al. (författare)
  • Molecular profiles of small cell lung cancer subtypes : therapeutic implications
  • 2021
  • Ingår i: Molecular Therapy - Oncolytics. - : Elsevier BV. - 2372-7705. ; 20, s. 470-483
  • Forskningsöversikt (refereegranskat)abstract
    • Small cell lung cancer (SCLC; accounting for approximately 13%–15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications. Small cell lung cancer is still regarded as a homogeneous disease associated with poor prognosis. Recent analysis, however, has led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and molecular profiles. The better understanding of these biologically distinct subtypes might help to define unique therapeutic vulnerabilities.
  •  
19.
  • Tajudin, Asilah Ahmad, et al. (författare)
  • Maldi-target integrated microfluidic PSA assay
  • 2009
  • Ingår i: Proceedings of Conference, MicroTAS 2009 - The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - 9780979806421 ; , s. 1064-1066
  • Konferensbidrag (refereegranskat)abstract
    • An Integrated Selective Enrichment Target (ISET), microfabricated for efficient on-bead enzymatic digestion of proteins compatible for a direct interface with matrix-assisted laser desorption /ionization mass spectrometry (MALDI MS) is presented.
  •  
20.
  • Torok, Szilvia, et al. (författare)
  • Limited tumor tissue drug penetration contributes to primary resistance against angiogenesis inhibitors
  • 2017
  • Ingår i: Theranostics. - : Ivyspring International Publisher. - 1838-7640. ; 7:2, s. 400-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies.
  •  
21.
  • Valko, Zsuzsanna, et al. (författare)
  • Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer
  • 2023
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 128:10, s. 1850-1861
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. Methods: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. Results: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. Conclusions: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX.
  •  
22.
  • Vialas, Vital, et al. (författare)
  • A multicentric study to evaluate the use of relative retention times in targeted proteomics
  • 2017
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1874-3919. ; 152, s. 138-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII). According to the results obtained in this study, dimensionless retention time values (iRTs) demonstrated to be a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups both intra- and inter-laboratories. iRT values also showed very low variability over long time periods. Furthermore, parallel quantitative analyses showed a high reproducibility despite the variety of experimental strategies used, either MRM (multiple reaction monitoring) or pseudoMRM, and the diversity of analytical platforms employed. Biological significance From the very beginning of proteomics as an analytical science there has been a growing interest in developing standardized methods and experimental procedures in order to ensure the highest quality and reproducibility of the results. In this regard, the recent (2012) introduction of the dimensionless retention time concept has been a significant advance. In our multicentric (28 laboratories) study we explore the usefulness of this concept in the context of a targeted proteomics experiment, demonstrating that dimensionless retention time values is a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups.
  •  
23.
  • Villacrez, Marvin, et al. (författare)
  • Evaluation of Drug Exposure and Metabolism in Locust and Zebrafish Brains Using Mass Spectrometry Imaging
  • 2018
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 9:8, s. 1994-2000
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying how and where drugs are metabolized in the brain is challenging. In an entire organism, peripheral metabolism produces many of the same metabolites as those in the brain, and many of these metabolites can cross the blood-brain barrier from the periphery, thus making the relative contributions of hepatic and brain metabolism difficult to study in vivo. In addition, drugs and metabolites contained in ventricles and in the residual blood of capillaries in the brain may overestimate drugs' and metabolites' concentrations in the brain. In this study, we examine locusts and zebrafish using matrix assisted laser desorption ionization mass spectrometry imaging to study brain metabolism and distribution. These animal models are cost-effective and ethically sound for initial drug development studies.
  •  
24.
  • Wan, Guihong, et al. (författare)
  • Development and validation of time-to-event models to predict metastatic recurrence of localized cutaneous melanoma
  • 2024
  • Ingår i: Journal of the American Academy of Dermatology. - 0190-9622. ; 90:2, s. 288-298
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The recent expansion of immunotherapy for stage IIB/IIC melanoma highlights a growing clinical need to identify patients at high risk of metastatic recurrence and, therefore, most likely to benefit from this therapeutic modality. Objective: To develop time-to-event risk prediction models for melanoma metastatic recurrence. Methods: Patients diagnosed with stage I/II primary cutaneous melanoma between 2000 and 2020 at Mass General Brigham and Dana-Farber Cancer Institute were included. Melanoma recurrence date and type were determined by chart review. Thirty clinicopathologic factors were extracted from electronic health records. Three types of time-to-event machine-learning models were evaluated internally and externally in the distant versus locoregional/nonrecurrence prediction. Results: This study included 954 melanomas (155 distant, 163 locoregional, and 636 1:2 matched nonrecurrences). Distant recurrences were associated with worse survival compared to locoregional/nonrecurrences (HR: 6.21, P < .001) and to locoregional recurrences only (HR: 5.79, P < .001). The Gradient Boosting Survival model achieved the best performance (concordance index: 0.816; time-dependent AUC: 0.842; Brier score: 0.103) in the external validation. Limitations: Retrospective nature and cohort from one geography. Conclusions: These results suggest that time-to-event machine-learning models can reliably predict the metastatic recurrence from localized melanoma and help identify high-risk patients who are most likely to benefit from immunotherapy.
  •  
25.
  • Wan, Guihong, et al. (författare)
  • Prediction of early-stage melanoma recurrence using clinical and histopathologic features
  • 2022
  • Ingår i: NPJ precision oncology. - : Springer Science and Business Media LLC. - 2397-768X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have become even more critical. This study aims to assess the effectiveness of machine-learning algorithms in predicting melanoma recurrence using clinical and histopathologic features from Electronic Health Records (EHRs). We collected 1720 early-stage melanomas: 1172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI). We extracted 36 clinicopathologic features and used them to predict the recurrence risk with supervised machine-learning algorithms. Models were evaluated internally and externally: (1) five-fold cross-validation of the MGB cohort; (2) the MGB cohort for training and the DFCI cohort for testing independently. In the internal and external validations, respectively, we achieved a recurrence classification performance of AUC: 0.845 and 0.812, and a time-to-event prediction performance of time-dependent AUC: 0.853 and 0.820. Breslow tumor thickness and mitotic rate were identified as the most predictive features. Our results suggest that machine-learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients that may benefit from adjuvant immunotherapy.
  •  
26.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy