SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Markocsan Nicolaie) "

Sökning: WFRF:(Markocsan Nicolaie)

  • Resultat 1-50 av 158
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abou Nada, Fahd Jouda, et al. (författare)
  • Remote temperature sensing on and beneath atmospheric plasma sprayed thermal barrier coatings using thermographic phosphors
  • 2016
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 302, s. 359-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigations on remote temperature sensing of yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) at the surface and at the bond-coat/top-coat interface were carried out. Using Y2O3:Eu thermographic phosphor as an embedded temperature sensing layer, sub-surface temperature probing through 300 μm of atmospheric plasma sprayed YSZ is demonstrated. The Y2O3:Eu thermographic phosphor displays a temperature sensitivity ranging between 400 °C up to a maximum of 900 °C when utilizing the luminescence originating from the 611 nm emission band. Dysprosium stabilized zirconia (10 wt.% DySZ), a TBC material, is also investigated and established as a temperature sensor from 400 °C up to a temperature of 1000 °C using both the intensity decay time and emission intensity ratio methods. In addition, the luminescence of presumed optically inactive YSZ materials was spectroscopically investigated in terms of optical interferences caused by impurities. A validation temperature probing measurement through 300 μm of YSZ top-coat was successfully performed in a SGT-800 Siemens burner running at six different operating conditions in an atmospheric combustion rig.
  •  
2.
  • Aranke, Omkar, 1994-, et al. (författare)
  • Microstructural Evolution and Sintering of Suspension Plasma-Sprayed Columnar Thermal Barrier Coatings
  • 2019
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 28:1-2, s. 198-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspension plasma spray (SPS) is capable of producing coatings with porous columnar structure, and it is also a much cheaper process compared to the conventionally used electron beam physical vapor deposition (EB-PVD). Although TBCs with a columnar microstructure that are fabricated using SPS have typically lower thermal conductivity than EB-PVD, they are used sparingly in the aerospace industry due to their lower fracture toughness and limited lifetime expectancy. Lifetime of TBCs is highly influenced by the topcoat microstructure. The objective of this work was to study the TBCs produced using axial SPS with different process parameters. Influence of the microstructure on lifetime of the coatings was of particular interest, and it was determined by thermal cyclic fatigue testing. The effect of sintering on microstructure of the coatings exposed to high temperatures was also investigated. Porosity measurements were taken using image analysis technique, and thermal conductivity of the coatings was determined by laser flash analysis. The results show that axial SPS is a promising method of producing TBCs having various microstructures with good lifetime. Changes in microstructure of topcoat due to sintering were seen evidently in porous coatings, whereas dense topcoats showed good resistance against sintering.
  •  
3.
  •  
4.
  • Battabyal, Manjusha, 1979, et al. (författare)
  • Comparison of microstructure in Ni-Al single splats and millimeter sized drops
  • 2011
  • Ingår i: Surface Modification Technologies XXV. - 9788191057140 ; , s. 3-12
  • Konferensbidrag (refereegranskat)abstract
    • Splat studies are a central area of research because they can provide fundamental knowledge on the phenomena controlling the final coating properties such as coating microstructure and adhesion. Wetting and heat transfer are expected to influence the final splat shape while they are in turn controlled by the presence of oxides and adsorbed species on the substrate surface. It is however difficult to follow the flattening of a sprayed droplet at the micrometer scale. Since the mid nineties, so-called free falling experiments have been developed with which it is possible to simulate the thermal spray process. The millimetre sized drops allow investigating the flattening and solidification occurring in milliseconds instead of in microseconds.In this study, the microstructure of plasma sprayed Ni-Al splats and millimetre sized droplets produced on TiAlV and pure Ti substrates, respectively, are compared. By use of scanning electron microscopy (SEM), especially the cross-section of splats and droplets has been investigated. In the splats, diffusion across the splat-substrate interface and the formation of an interface layer is detected. In the droplets, up to 3 different layers are formed at the interface to the substrate. The microstructure at the interface and the phases present are discussed and their influence on heat transfer and coating properties are described.In this study, the microstructure of plasma sprayed Ni-Al splats and millimetre sized droplets produced on TiAlV and pure Ti substrates, respectively, are compared. By use of scanning electron microscopy (SEM), especially the cross-section of splats and droplets has been investigated. In the splats, diffusion across the splat-substrate interface and the formation of an interface layer is detected. In the droplets, up to 3 different layers are formed at the interface to the substrate. The microstructure at the interface and the phases present are discussed and their influence on heat transfer and coating properties are described.
  •  
5.
  • Bellippady, Madhura, et al. (författare)
  • Characteristics and performance of suspension plasma sprayed thermal barrier coatings on additively manufactured superalloy substrates
  • 2023
  • Ingår i: Surface and Coatings Technology. - : Elsevier. - 0257-8972. ; 472
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex-shaped hot-section parts of new-generation turbine engines demand unique design solutions. Additive Manufacturing (AM) is an emergent production method that can produce metallic parts with complex geometries and minimal material wastage. In this work, the characteristics and performance behavior of Thermal Barrier Coatings (TBCs) deposited on forged and AM-built HAYNES®282® superalloy substrates were studied and compared. The bond coats were produced by High-Velocity Air-Fuel (HVAF) spraying using NiCoCrAlY powder feedstock and TBC top-coats by Suspension Plasma Spraying (SPS) using water- and ethanol-based suspensions of Yttria-Stabilized Zirconia (YSZ). The microstructural features, adhesion, Thermal Cycling Fatigue (TCF) lifetime, and thermal shock lifetimes of the TBCs were comprehensively investigated. The results showed that the deposition of bond coats reduced the roughness and asperities of the AM-built substrates. Depending on the type of suspension used and the spray parameters employed, the TBCs exhibited vertically cracked and columnar microstructures. However, no significant differences in TCF and thermal shock lifetimes of TBCs on AM and forged substrates were observed. It is demonstrated that TBC systems can be produced on AM-built metallic substrates, and the resulting TBCs can have similar microstructures and properties as TBCs deposited on conventional substrates.
  •  
6.
  • Bellippady, Madhura, et al. (författare)
  • Performance of Atmospheric Plasma-Sprayed Thermal Barrier Coatings on Additively Manufactured Super Alloy Substrates
  • 2024
  • Ingår i: Coatings. - : MDPI. - 2079-6412. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • This work represents a preliminary study of atmospheric plasma-sprayed (APS) YttriaStabilized Zirconia (YSZ)-based thermal barrier coatings (TBCs) deposited on forged and additivemanufactured (AM) HAYNES®282® (H282) superalloy substrates. The effect of different feedstockmorphologies and spray gun designs with radial and axial injection on APS-deposited YSZ layercharacteristics such as microstructure, porosity content, roughness, etc., has been investigated. Theperformance of TBCs in terms of thermal cycling fatigue (TCF) lifetime and erosion behaviour werealso comprehensively investigated. In view of the high surface roughness of as-built AM surfacescompared to forged substrates, two different types of NiCoCrAlY bond coats were examined: oneinvolved high-velocity air fuel (HVAF) spraying of a finer powder, and the other involved APSdeposition of a coarser feedstock. Despite the process and feedstock differences, the above two routesyielded comparable bond coat surface roughness on both types of substrates. Variation in porositylevel in the APS topcoat was observed when deposited using different YSZ feedstock powdersemploying axial or radial injection. However, the resultant TBCs on AM-derived substrates wereobserved to possess similar microstructures and functional properties as TBCs deposited on reference(forged) substrates for any given YSZ deposition process and feedstock. 
  •  
7.
  • Bellippady, Madhura, et al. (författare)
  • Process Parameter Impact on Axial Plasma Sprayed Ytterbium Disilicate Coatings for Environment Barrier Coating Applications
  • 2024
  • Ingår i: Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning. - : IOS Press. - 9781643685106 - 9781643685113 ; , s. 101-110
  • Bokkapitel (refereegranskat)abstract
    • In future generation aviation, light weight, and thermally stable SiC/SiC ceramic matrix composites (CMCs) are considered the most promising structural materials to replace traditionally used Ni-based superalloys. However, in the presence of steam (a common combustion reaction product) and corrosive species (from ingestion of debris along with the intake air during take-off and landing), accelerated degradation of CMCs compromising its structural integrity is inevitable. Environmental Barrier Coatings (EBCs) are protective ceramic coatings consisting of rare earth (RE) silicates as a topcoat with silicon as a bond coat, and are widely used on CMCs, to impede their surface recession.Thermal spray techniques are commonly employed to deposit EBCs, with highly crystalline, dense, and crack free coatings being desired for robust performance. In general, the high particle velocity and efficient energy transfer in axial feeding systems can result in coatings with higher density, reduced oxide content, and improved mechanical properties. In the present study, axial plasma sprayed ytterbium disilicate (YbDS) coatings deposited on silicon carbide (SiC) substrates using varying plasma spray parameters have been comprehensively characterized. Microstructure, porosity, and hardness have been studied for YbDS coatings deposited by varying nozzle diameter, carrier gas flow rate and stand of distance (SOD) during plasma spraying. Erosion and thermal cyclic fatigue performance of these coatings has also been investigated. 
  •  
8.
  • Bolelli, G., et al. (författare)
  • Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2-NiCr hardmetal coatings
  • 2016
  • Ingår i: Wear. - : Elsevier BV. - 0043-1648 .- 1873-2577. ; 358-359, s. 32-50
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides a comprehensive characterisation of HVOF- and HVAF-sprayed Cr3C2–25 wt.% NiCr hardmetal coatings. One commercial powder composition with two different particle size distributions was processed using five HVOF and HVAF thermal spray systems.All coatings contain less Cr3C2 than the feedstock powder, possibly due to the rebound of some Cr3C2-rich particles during high-velocity impact onto the substrate.Dry sand-rubber wheel abrasive wear testing causes both grooving and pull-out of splat fragments. Mass losses depend on inter- and intra-lamellar cohesion, being higher (≥70 mg after a wear distance of 5904 m) for the coatings deposited with the coarser feedstock powder or with one type of HVAF torch.Sliding wear at room temperature against alumina involves shallower abrasive grooving, small-scale delamination and carbide pull-outs, and it is controlled by intra-lamellar cohesion. The coatings obtained from the fine feedstock powder exhibit the lowest wear rates (≈5x10−6 mm3/(Nm)). At 400 °C, abrasive grooving dominates the sliding wear behaviour; wear rates increase by one order of magnitude but friction coefficients decrease from ≈0.7 to ≈0.5. The thermal expansion coefficient of the coatings (11.08x10−6 °C−1 in the 30–400 °C range) is sufficiently close to that of the steel substrate (14.23x10−6 °C−1) to avoid macro-cracking
  •  
9.
  • Bolelli, G., et al. (författare)
  • Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatings : A comparative assessment
  • 2015
  • Ingår i: Surface and Coatings Technology. - : Elsevier. - 0257-8972. ; 265, s. 125-144
  • Tidskriftsartikel (refereegranskat)abstract
    • his paper provides a comprehensive assessment of the sliding and abrasive wear behaviour of WC–10Co4Cr hardmetal coatings, representative of the existing state-of-the-art. A commercial feedstock powder with two different particle size distributions was sprayed onto carbon steel substrates using two HVOF and two HVAF spray processes.Mild wear rates of < 10-7 mm3/(Nm) and friction coefficients of ≈ 0.5 were obtained for all samples in ball-on-disk sliding wear tests at room temperature against Al2O3 counterparts. WC–10Co4Cr coatings definitely outperform a reference electrolytic hard chromium coating under these test conditions. Their wear mechanisms include extrusion and removal of the binder matrix, with the formation of a wavy surface morphology, and brittle cracking. The balance of such phenomena is closely related to intra-lamellar features, and rather independent of those properties (e.g. indentation fracture toughness, elastic modulus) which mainly reflect large-scale inter-lamellar cohesion, as quantitatively confirmed by a principal component analysis. Intra-lamellar dissolution of WC into the matrix indeed increases the incidence of brittle cracking, resulting in slightly higher wear rates. At 400 °C, some of the hardmetal coatings fail because of the superposition between tensile residual stresses and thermal expansion mismatch stresses (due to the difference between the thermal expansion coefficients of the steel substrate and of the hardmetal coating). Those which do not fail, on account of lower residual stresses, exhibit higher wear rates than at room temperature, due to oxidation of the WC grains.The resistance of the coatings against abrasive wear, assessed by dry sand–rubber wheel testing, is related to inter-lamellar cohesion, as proven by a principal component analysis of the collected dataset. Therefore, coatings deposited from coarse feedstock powders suffer higher wear loss than those obtained from fine powders, as brittle inter-lamellar detachment is caused by their weaker interparticle cohesion, witnessed by their systematically lower fracture toughness as well.
  •  
10.
  • Cernuschi, F., et al. (författare)
  • Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings
  • 2011
  • Ingår i: Wear. - : Elsevier BV. - 0043-1648 .- 1873-2577. ; 271:11-12, s. 2909-2918
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal barrier coatings (TBC) are used to protect hot path components of gas turbines from hot combustion gases. For a number of decades, in the case of aero engines TBCs are usually deposited by electron beam physical vapour deposition (EB-PVD). EB-PVD coatings have a columnar microstructure that guarantees high strain compliance and better solid particle erosion than PS TBCs. The main drawback of EB-PVD coating is the deposition cost that is higher than that of air plasma sprayed (APS) TBC. The major scientific and technical objective of the UE project TOPPCOAT was the development of improved TBC systems using advanced bonding concepts in combination with additional protective functional coatings. The first specific objective was to use these developments to provide a significant improvement to state-of-the-art APS coatings and hence provide a cost-effective alternative to EB-PVD. In this perspective one standard porous APS, two segmented APS, one EB-PVD and one PS-PVD™ were tested at 700°C in a solid particle erosion jet tester, with EB-PVD and standard porous APS being the two reference systems.Tests were performed at impingement angles of 30° and 90°, representative for particle impingement on trailing and leading edges of gas turbine blades and vanes, respectively. Microquartz was chosen as the erodent being one of the main constituents of sand and fly volcanic ashes. After the end of the tests, the TBC microstructure was investigated using electron microscopy to characterise the failure mechanisms taking place in the TBC.It was found that PS-PVD™ and highly segmented TBCs showed erosion rates comparable or better than EB-PVD samples. © 2011 Elsevier B.V.
  •  
11.
  • Chen, Y., et al. (författare)
  • Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application
  • 2015
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454 .- 1873-2453. ; 94, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The residual stresses in a NiCoCrAlY bond coat deposited on a Ni-base superalloy substrate after oxidation at 1150 °C were studied by X-ray diffraction using the sin2Ψ technique. The stresses were found to be tensile; they first increased and then decreased with oxidation time. High temperature stress measurement indicated that the stress developed and built up upon cooling, predominantly within the temperature range from 1150 °C to 600 °C. Microstructural examination suggested that, due to the limited penetration depth into the bond coat, the X-ray only probed the stress in a thin surface layer consisting of the single γ-phase formed through Al depletion during oxidation. Quantitative high temperature X-ray diffraction analysis revealed that, above 600 °C, the volume fraction of the β-phase in the bond coat increased with decreasing temperature. The mechanisms of stress generation in the bond coat were examined and are discussed based on the experiments designed to isolate the contribution of possible stress generation factors. It was found that the measured bond coat stresses were mainly induced by the volume change of the bond coat associated with the precipitation of the β-phase upon cooling.
  •  
12.
  • Chen, Ying, et al. (författare)
  • Measurements of elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating using micro-cantilever bending
  • 2019
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 374, s. 12-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating (APS TBC) were measured using the micro-cantilever bending technique. The micro-cantilevers were machined by a focused ion beam with their central arms either parallel or normal to the bond coat/topcoat interface. Such orientations allowed direct measurements of both the in-plane and out-of-plane elastic moduli as well as mode I fracture toughness by bending. The calculated elastic modulus along the in-plane and out-of-plane direction is 144 GPa and 110 GPa, respectively, suggesting that the APS TBC is elastically anisotropic at microscale. The derived mode I fracture toughness along the plane parallel to the interface is 0.40 MPam. This relatively low toughness reflects the weak fracture resistance of the highly-flawed APS for short cracks at microscale. The measurements in this study can be incorporated into micromechanical life time prediction models of the APS TBCs. © 2019 Elsevier B.V.
  •  
13.
  • Clement, C., et al. (författare)
  • Corrosion behavior of HVAF- and HVOF-sprayed high-chromium Fe-based coatings
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • Fe-based coatings with three particular elemental compositions and two different powder particle size were prepared by high-velocity air fuel (HVAF) and high-velocity oxy fuel (HVOF) techniques. The corrosion behavior of which were comparatively studied in 3.5 wt.% NaCl solution. The results indicated that the coatings produced by HVAF process exhibited denser structure with lower porosity. Polarization and electrochemical impedance spectroscopy (EIS) tests indicated that the HVAF coatings provided better corrosion resistance than the HVOF coatings. The presence of defects was significant in HVOF coatings. The investigation illustrated that the corrosion paths initiated and grow through defects of the coating. Furthermore, adding Cr strongly improved the corrosion resistance of the coatings. The results confirmed that the cheap HVAF process could be a potential alternative to HVOF to fabricate Fe-based coatings for industrial applications.
  •  
14.
  • Curry, Nicholas, 1984- (författare)
  • Design of Thermal Barrier Coating Systems
  • 2012
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thermal barrier coatings (TBC’s) are used to provide both thermal insulation and oxidation protection to high temperature components within gas turbines. The development of turbines for power generation and aviation has led to designs where the operation conditions exceed the upper limits of most conventional engineering materials. As a result there has been a drive to improve thermal barrier coatings to allow the turbine to operate hotter for longer.The focus of this study has been the development of a new generation of TBC system for industrial implementation. The goal for these new coatings was to achieve lower conductivity and longer lifetime than those coatings used today. The route taken to achieve these goals has been twofold. Firstly an alternative stabiliser has been chosen for the zirconium oxide system in the form of dysprosia. Secondly, Control of the powder morphology and spray parameters has been used to generate coating microstructures with favourable levels of porosity.Samples have been heavily characterised using the laser flash technique for evaluation of thermal properties. Measurements were performed at room temperature and at intervals up to 1200°C. Samples have also been tested in their as produced state and after heat treatments of up to 200 hours.Lifetime evaluation has been performed using the thermo-cyclic fatigue test to expose coating systems to successive cycles of heating and cooling combined with oxidation of the underlying metallic coating.Microstructures have been prepared and analysed using SEM. An image analysis routine has been used to attempt to quantify changes in microstructure features between coating types or coating exposure times and to relate those changes to changes in thermal propertiesResults show that dysprosia as an alternative dopant gives a reduction in thermal conductivity. While small at room temperature and in the as produced state; the influence becomes more pronounced at high temperatures and with thermal exposure time. Overall, the greatest sustained influence on thermal conductivity has been from creating coatings with high levels of porosity.In relation to lifetime, the target of double the thermo-cyclic fatigue life was achieved using a coating with engineered porosity. Introducing a polymer to the spray powder helps to generate large globular pores within the coating together with a large number of delaminations. Such a structure has shown to be highly resistant to TCF testing.
  •  
15.
  • Curry, Nicholas, 1984- (författare)
  • Design of Thermal Barrier Coatings
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thermal barrier coatings (TBC’s) are used to provide both thermal insulation and oxidation protection to high temperature components within gas turbines. The development of turbines for power generation and aviation has led to designs where the operation conditions exceed the upper limits of most conventional engineering materials. As a result there has been a drive to improve thermal barrier coatings to allow the turbine to operate at higher temperatures for longer.The focus of this thesis has been to design thermal barrier coatings with lower conductivity and longer lifetime than those coatings used in industry today. The work has been divided between the development of new generation air plasma spray (APS) TBC coatings for industrial gas turbines and the development of suspension plasma spray (SPS) TBC systems.The route taken to achieve these goals with APS TBC’s has been twofold. Firstly an alternative stabiliser has been chosen for the zirconium oxide system in the form of dysprosia. Secondly, control of the powder morphology and spray parameters has been used to generate coating microstructures with favourable levels of porosity.In terms of development of SPS TBC systems, these coatings are relatively new with many of the critical coating parameters not yet known. The focus of the work has therefore been to characterise their lifetime and thermal properties when produced in a complete TBC system.Results demonstrate that dysprosia as an alternative stabiliser gives a reduction in thermal conductivity. While small at room temperature and in the as produced state; the influence becomes more pronounced at high temperatures and with longer thermal exposure time. The trade-off for this lowered thermal conductivity may be in the loss of high temperature stability. Overall, the greatest sustained influence on thermal conductivity has been from creating coatings with high levelsof porosity.In relation to lifetime, double the thermo-cyclic fatigue (TCF) life relative to the industrial standard was achieved using a coating with engineered porosity. Introducing a polymer to the spray powder helps to generate large globular pores within the coating together with a large number of delaminations. Such a structure was shown to be highly resistant to TCF testing.SPS TBC’s were shown to have much greater performance relative to their APS counterparts in thermal shock life, TCF life and thermal conductivity. Columnar SPS coatings are a prospective alternative for strain tolerant coatings in gas turbine engines.
  •  
16.
  • Curry, Nicholas, 1984-, et al. (författare)
  • Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems
  • 2013
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 22:6, s. 864-872
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was the further development of dysprosia stabilised zirconia coatings for gas turbine applications. The target for these coatings was a longer lifetime and higher insulating performance compared to today's industrial stan dard thermal barrier coating. Two morphologies of ceramic top coat were studied; one using a dual layer systems and the second using a polymer to generate porosity. Evaluations were carried out using laser flash technique to measure thermal properties. Lifetime testing was conducted using thermal shock testing and thermo-cyclic fatigue testing. Microstructure was assessed with SEM and Image analysis used to characterise porosity content. The results show that coatings with an engineered microstructure give performance twice that of the present reference coating.
  •  
17.
  • Curry, Nicholas, 1984-, et al. (författare)
  • Impact of Impurity Content on the Sintering Resistance and Phase Stability of Dysprosia- and Yttria-Stabilized Zirconia Thermal Barrier Coatings
  • 2014
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 23:1-2, s. 160-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysprosia-stabilized zirconia (DySZ) is a promising candidate to replace yttria-stabilized zirconia (YSZ) as a thermal barrier coating due to its lower inherent thermal conductivity. It is also suggested in studies that DySZ may show greater stability to high temperature phase changes compared to YSZ, possibly allowing for coatings with extended lifetimes. Separately, the impurity content of YSZ powders has been proven to influence high-temperature sintering behavior. By lowering the impurity oxides within the spray powder, a coating more resistant to sintering can be produced. This study presents both high purity and standard purity dysprosia and YSZ coatings and their performance after a long heat treatment. Coatings were produced using powder with the same morphology and grain size; only the dopant and impurity content were varied. Samples have been heat treated for exposure times up to 400 h at a temperature of 1150 °C. Samples were measured for thermal conductivity to plot the evolution of coating thermal properties with respect to exposure time. Thermal conductivity has been compared to microstructure analysis and porosity measurement to track structural changes. Phase analysis utilizing x-ray diffraction was used to determine differences in phase degradation of the coatings after heat treatment. © 2013 ASM International.
  •  
18.
  • Curry, Nicholas, 1984-, et al. (författare)
  • Impact of impurity content on the sintering resistance of dysprosia and yttria stabilised zirconia thermal barrier coatings
  • 2013
  • Ingår i: Proceedings of the International Thermal Spray Conference. - : ASM International. - 9781632666819 ; , s. 557-563
  • Konferensbidrag (refereegranskat)abstract
    • Dysprosia stabilised zirconia (DySZ) is a promising candidate to replace yttria stabilised zirconia (YSZ) as a thermal barrier coating due to its lower inherent thermal conductivity. It is also suggested in studies that DySZ may show greater stability to high temperature phase changes compared to YSZ, possibly allowing for coatings with extended lifetimes. Separately, the impurity content of YSZ powders has been proven to influence high temperature sintering behaviour. By lowering the impurity oxides within the spray powder, a coating more resistant to sintering can be produced. This study presents both high purity and standard purity dysprosia and yttria stabilised zirconia coatings and their performance after a long heat treatment. Coatings were produced using powder with the same morphology and grain size; only the dopant and impurity content were varied. Samples have been heat treated for exposure times up to 400 hours at a temperature of 1150°C. Samples were subsequently measured for thermal conductivity to plot the evolution of coating thermal properties with respect to exposure time. Thermal conductivity has been compared to microstructure analysis and porosity measurement to track structural changes due to sintering.
  •  
19.
  •  
20.
  •  
21.
  • Curry, Nicholas, 1984-, et al. (författare)
  • Next generation thermal barrier coatings for the gas turbine industry
  • 2011
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 20:1-2, s. 108-115
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings. © 2010 ASM International.
  •  
22.
  •  
23.
  • Curry, Nicholas, 1984-, et al. (författare)
  • Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings
  • 2014
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 4:3, s. 630-650
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspension plasma spraying (SPS) has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS) or electron beam physical vapor deposition (EB-PVD) coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs) with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM
  •  
24.
  •  
25.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)
  • 2015
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 24:7, s. 1195-1204
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower. © 2015 ASM International
  •  
26.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Characterization of Thermal Barrier Coatings Produced by Various Thermal Spray Techniques Using Solid Powder, Suspension, and Solution Precursor Feedstock Material
  • 2016
  • Ingår i: International Journal of Applied CeramicTechnology. - : Wiley-Blackwell. - 1546-542X .- 1744-7402. ; 13:2, s. 324-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Use of a liquid feedstock in thermal spraying (an alternative to the conventional solid powder feedstock) is receiving an increasing level of interest due to its capability to produce the advanced submicrometer/nanostructured coatings. Suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS) are those advanced thermal spraying techniques which help to feed this liquid feedstock. These techniques have shown to produce better performance thermal barrier coatings (TBCs) than conventional thermal spraying. In this work, a comparative study was performed between SPS- and SPPS-sprayed TBCs which then were also compared with the conventional atmospheric plasma-sprayed (APS) TBCs. Experimental characterization included SEM, porosity analysis using weight difference by water infiltration, thermal conductivity measurements using laser flash analysis, and lifetime assessment using thermo-cyclic fatigue test. It was concluded that SPS coatings can produce a microstructure with columnar type features (intermediary between the columnar and vertically cracked microstructure), whereas SPPS can produce vertically cracked microstructure. It was also shown that SPS coatings with particle size in suspension (D50) <3 μm were highly porous with lower thermal conductivity than SPPS and APS coatings. Furthermore, SPS coatings have also shown a relatively better thermal cyclic fatigue lifetime than SPPS.
  •  
27.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings
  • 2015
  • Ingår i: Surface and Coatings Technology. - : Elsevier. - 0257-8972. ; 268, s. 70-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspension Thermal Spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings. This technique enables the production of much different performance thermal barrier coatings than conventional thermal spraying which uses solid powder as a feedstock material. In this work a comparative study is performed on four different types of thermal barrier coatings sprayed with two different thermal spay processes, suspension high velocity oxy-fuel spraying (SHVOF) and suspension plasma spraying (SPS) using two different water-based suspensions. Tests carried out include microstructural analysis with SEM, porosity analysis using weight difference by water infiltration, thermal conductivity measurements using laser flash analysis and lifetime assessment using thermo-cyclic fatigue tests. The results showed that SPS coatings were much porous and hence showed lower thermal conductivity than SHVOF coatings produced with the same suspension. From the thermo-cycling tests it was observed that the SPS coatings showed a higher lifetime than the SHVOF ones.
  •  
28.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Deposition of hydroxyapatite coatings by axial plasma spraying : Influence of feedstock characteristics on coating microstructure, phase content and mechanical properties
  • 2021
  • Ingår i: Journal of the European Ceramic Society. - : Elsevier. - 0955-2219 .- 1873-619X. ; 41:8, s. 4637-4649
  • Tidskriftsartikel (refereegranskat)abstract
    • Axial plasma spray is one of the thermal spray techniques to deposit multifunctional advanced coatings. The present work explores the use of this process to deposit thin, continuous, and adherent Ca5 (PO4)3OH (hydroxyapatite, HAp) coatings and characterize its microstructure, phases, hardness and adhesion strength. Three different suspension-deposited HAp coatings were investigated and compared with powder-deposited HAp coating on a Ti6Al4V substrate. The effect of mean solute particle size and solid-loading in the suspension has been explored on the evolution of microstructure, phase content and mechanical properties of axial suspension plasma sprayed (ASPS) coatings. Phase-characterization has shown retention of hydroxyapatite phase and coating crystallinity in the deposited coatings, whereas the adhesion strength of the HAp coating decreased from -40 MPa to -13 MPa when bioglass was added to the feedstock material. The lower solid load content and lower mean solute particle size in the suspension were found to be beneficial in achieving porous, rougher, and welladhering coatings. This work concludes that ASPS can potentially deposit thin HAp coatings (< 50 ?m) with high adhesion strength.
  •  
29.
  • Ganvir, Ashish, 1991- (författare)
  • Design of Suspension Plasma Sprayed Thermal Barrier Coatings
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thermal barrier coatings (TBCs) are widely used on gas turbine components to provide thermal insulation, which in combination with advanced cooling, can enable the gas turbine to operate at significantly higher temperatures even above the melting temperature of the metallic components. There is a permanent need,mainly due to environmental reasons, to increase the combustion temperature inturbines, hence new TBC solutions are needed. By using a liquid feedstock in thermal spraying, new types of TBCs can be produced. Suspension plasma/flame or solution precursor plasma spraying are examples of techniques that can be utilized for liquid feedstock thermal spraying. This approach of using suspension and solution feedstock, which is an alternative to the conventional solid powder feedstock spraying, is gaining increasing research interest since it has been shown to be capable of producing coatings withsuperior performance. The objective of this research work was to identify relationships between process parameters, coating microstructure, thermal conductivity and lifetime in suspension plasma sprayed TBCs. A further objective was to utilize these relationships to enable tailoring of the TBC microstructure for superior performance compared to state-of-the-art TBC used in industry today, i.e. solid feedstock plasma sprayed TBCs. Different spraying techniques, namely suspension high velocity oxy fuel, solution precursor plasma and suspension plasma spraying (with axial and radial feeding) were explored and compared to solid feedstock plasma spraying. A variety of microstructures, such as highly porous, vertically cracked and columnar, were produced and investigated. It was shown that there are strong relationships between microstructure, thermo-mechanical properties and performance of the coatings. Specifically, axial suspension plasma spraying wasshown as a very promising technique to produce various microstructures as wellas highly durable coatings. Based on the experimental results, a tailored columnar microstructure design for a superior TBC performance is also proposed.
  •  
30.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Effect of suspension characteristics on the performance of thermal barrier coatings deposited by suspension plasma spray
  • 2020
  • Ingår i: Ceramics International. - : Elsevier. - 0272-8842 .- 1873-3956. ; 47:1, s. 272-283
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs. © 2020
  •  
31.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings
  • 2019
  • Ingår i: Journal of the European Ceramic Society. - : Elsevier BV. - 0955-2219 .- 1873-619X. ; 39:2-3, s. 470-481
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the evolution of microstructure of thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) through a careful experimental study. Understanding the influence of different suspension characteristics such as type of solvent, solid load content and median particle size on the ensuing TBC microstructure, as well as visualizing the early stages of coating build-up leading to formation of a columnar microstructure or otherwise, was of specific interest. Several SPS TBCs with different suspensions were deposited under identical conditions (same substrate, bond coat and plasma spray parameters). The experimental study clearly revealed the important role of suspension characteristics, namely surface tension, density and viscosity, on the final microstructure, with study of its progressive evolution providing invaluable insights. Variations in suspension properties manifest in the form of differences in droplet momentum and trajectory, which are found to be key determinants governing the resulting microstructure (e.g., lamellar/vertically cracked or columnar).
  •  
32.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying : A design perspective
  • 2018
  • Ingår i: Ceramics International. - : Elsevier BV. - 0272-8842 .- 1873-3956. ; 44:3, s. 3161-3172
  • Tidskriftsartikel (refereegranskat)abstract
    • Axial-suspension-plasma spraying (ASPS) is a fairly recent thermal spray technology which enables production of ceramic top coats in TBCs, incorporating simultaneously the properties of both the conventional-plasma sprayed (highly insulating porous structures) and electron-beam-physical-vapor-deposited (strain-tolerant columnar structures) top coats. TBCs are required to insulate the hot components in a gas turbine engine against high temperature and harsh operating conditions. Periodic heating and cooling of turbine engines during operation can create severe thermal cyclic fatigue conditions which can degrade the performance of these coatings eventually leading to the failure. An in-depth experimental investigation was performed to understand the failure behavior of columnar TBCs subjected to thermal cyclic fatigue (TCF) test at 1100 C. The study revealed that the TCF performance was influenced to an extent, by the top coat microstructure, but was primarily affected by the severity of thermally grown oxide (TGO) growth at the bond coat-top coat interface. Mixed failure modes comprising crack propagation through the bond coat-TGO interface, through TGO and within the top coat were identified. Based on the analysis of the experimental results and thorough discussion a novel design of microstructure for the high TCF performance columnar TBC is proposed. © 2017 Elsevier Ltd and Techna Group S.r.l.
  •  
33.
  • Ganvir, Ashish, et al. (författare)
  • Influence of Isothermal Heat Treatment on Porosity and Crystallite Size in Axial Suspension Plasma Sprayed Thermal Barrier Coatings for Gas Turbine Applications
  • 2017
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 7:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • xial suspension plasma spraying (ASPS) is an advanced thermal spraying technique, which enables the creation of specific microstructures in thermal barrier coatings (TBCs) used for gas turbine applications. However, the widely varying dimensional scale of pores, ranging from a few nanometers to a few tenths of micrometers, makes it difficult to experimentally measure and analyze porosity in SPS coatings and correlate it with thermal conductivity or other functional characteristics of the TBCs. In this work, an image analysis technique carried out at two distinct magnifications, i.e., low (500×) and high (10,000×), was adopted to analyze the wide range of porosity. Isothermal heat treatment of five different coatings was performed at 1150 °C for 200 h under a controlled atmosphere. Significant microstructural changes, such as inter-columnar spacing widening or coalescence of pores (pore coarsening), closure or densification of pores (sintering) and crystallite size growth, were noticed in all the coatings. The noted changes in thermal conductivity of the coatings following isothermal heat treatment are attributable to sintering, crystallite size growth and pore coarsening
  •  
34.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings
  • 2016
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 25:1-2, s. 202-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.
  •  
35.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Influence of Microstructure on Thermal Properties of Columnar Axial Suspension Plasma Sprayed Thermal Barrier Coatings
  • 2015
  • Ingår i: Proceedings of the International Thermal Spray Conference. - : ASM International. - 9781510811546 ; , s. 498-505
  • Konferensbidrag (refereegranskat)abstract
    • Suspension Plasma Spraying is a relatively new thermal spraying technique to produce advanced thermal barrier coatings. This technique enables the production of a variety of structures from highly dense, highly porous, segmented or columnar coatings. In this work a comparative study is performed on six different suspension plasma sprayed thermal barrier coatings which were produced using axial injection and different process parameters. The influence of coating morphology and porosity on thermal properties was of specific interest. Tests carried out include microstructural analysis with SEM, phase analysis using XRD, porosity calculation using Archimedes experimental setup, pore distribution analysis using mercury infiltration technique and thermal diffusivity/conductivity measurements using laser flash analysis. The results showed that columnar and cauliflower type coatings were produced by axial suspension plasma spraying process. Better performance coatings were produced with relatively higher overall energy input given during spraying. Coatings with higher energy input, lower thickness and wider range of submicron and nanometer sized pores distribution showed lower thermal diffusivity and hence lower thermal conductivity. Also, in-situ heat treatment did not show dramatic increase in thermal properties.
  •  
36.
  •  
37.
  •  
38.
  • Ganvir, Ashish, 1991- (författare)
  • Microstructure and Thermal Conductivity of Liquid Feedstock Plasma Sprayed Thermal Barrier Coatings
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thermal barrier coating (TBC) systems are widely used on gas turbine components to provide thermal insulation and oxidation protection. TBCs, incombination with advanced cooling, can enable the gas turbine to operate at significantly higher temperatures even above the melting temperature of the metallic materials. There is a permanent need mainly of environmental reasons to increase the combustion turbine temperature, hence new TBC solutions are needed.By using a liquid feedstock in thermal spraying, new types of TBCs can be produced. Suspension plasma/flame or solution precursor plasma spraying are examples of techniques that can be utilized for liquid feedstock thermal spraying.This approach of using suspension and solution feedstock, which is an alternative to the conventional solid powder feed stock spraying, is gaining increasing research interest, since it has been shown to be capable of producing coatings with superior coating performance.The objective of this research work was to explore relationships between process parameters, coating microstructure, thermal diffusivity and thermal conductivity in liquid feedstock thermal sprayed TBCs. A further aim was to utilize this knowledge to produce a TBC with lower thermal diffusivity and lower thermal conductivity compared to state-of-the-art in industry today, i.e. solid feed stock plasma spraying. Different spraying techniques, suspension high velocity oxy fuel,solution precursor plasma and suspension plasma spraying (with axial and radialfeeding) were explored and compared with solid feedstock plasma spraying.A variety of microstructures, such as highly porous, vertically cracked and columnar, were obtained. It was shown that there are strong relationships between the microstructures and the thermal properties of the coatings.Specifically axial suspension plasma spraying was shown as a very promising technique to produce various microstructures as well as low thermal diffusivity and low thermal conductivity coatings.
  •  
39.
  •  
40.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance
  • 2018
  • Ingår i: Materials & design. - : Elsevier BV. - 0264-1275 .- 1873-4197. ; 144, s. 192-208
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the thermal shock behavior of thermal barrier coatings (TBCs) produced by axial suspension plasma spraying (ASPS). TBCs with different columnar microstructures were subjected to cyclic thermal shock testing in a burner rig. Failure analysis of these TBCs revealed a clear relationship between lifetime and porosity. However, tailoring the microstructure of these TBCs for enhanced durability is challenging due to their inherently wide pore size distribution (ranging from few nanometers up to few tens of micrometers). This study reveals that pores with different length scales play varying roles in influencing TBC durability. Fracture toughness shows a strong correlation with the lifetime of various ASPS TBCs and is found to be the prominent life determining factor. Based on the results, an understanding-based design philosophy for tailoring of the columnar microstructure of ASPS TBCs for enhanced durability under cyclic thermal shock loading is proposed. © 2018 The Authors
  •  
41.
  •  
42.
  • Gupta, Mohit Kumar, 1986-, et al. (författare)
  • Design of high lifetime suspension plasma sprayed thermal barrier coatings
  • 2020
  • Ingår i: Journal of the European Ceramic Society. - : Elsevier BV. - 0955-2219 .- 1873-619X. ; 40:3, s. 768-779
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal barrier coatings (TBCs) fabricated by suspension plasma spraying (SPS) have shown improved performance due to their low thermal conductivity and high durability along with relatively low production cost. Improvements in SPS TBCs that could further enhance their lifetime would lead to their widespread industrialisation. The objective of this study was to design a SPS TBC system with optimised topcoat microstructure and topcoat bondcoat interface, combined with appropriate bondcoat microstructure and chemistry, which could exhibit high cyclic lifetime. Bondcoat deposition processes investigated in this study were high velocity air fuel (HVAF) spraying, high velocity oxy fuel spraying, vacuum plasma spraying, and diffusion process. Topcoat microstructure with high column density along with smooth topcoat bondcoat interface and oxidation resistant bondcoat was shown as a favourable design for significant improvements in the lifetime of SPS TBCs. HVAF sprayed bondcoat treated by shot peening and grit blasting was shown to create this favourable design.
  •  
43.
  • Gupta, Mohit Kumar, 1986-, et al. (författare)
  • Design of Next Generation Thermal Barrier Coatings- Experiments and Modelling
  • 2013
  • Ingår i: Surface and Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 220, s. 20-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal barrier coating (TBC) systems have been used in the gas turbine industry since the 1980's. The future needs of both the air and land based turbine industry involve higher operating temperatures with longer lifetime on the component so as to increase power and efficiency of gas turbines. The aim of this study was to meet these future needs by further development of zirconia coatings. The intention was to design a coating system which could be implemented in industry within the next three years. Different morphologies of ceramic topcoat were evaluated; using dual layer systems and polymers to generate porosity. Dysprosia stabilised zirconia was also included in this study as a topcoat material along with the state-of-the-art yttria stabilised zirconia (YSZ). High purity powders were selected in this work. Microstructure was assessed with scanning electron microscope and an in-house developed image analysis routine was used to characterise porosity content. Evaluations were carried out using the laser flash technique to measure thermal conductivity. Lifetime was assessed using thermo-cyclic fatigue testing. Finite element analysis was utilised to evaluate thermal-mechanical material behaviour and to design the morphology of the coating with the help of an artificial coating morphology generator through establishment of relationships between microstructure, thermal conductivity and stiffness. It was shown that the combined empirical and numerical approach is an effective tool for developing high performance coatings. The results show that large globular pores and connected cracks inherited within the coating microstructure result in a coating with best performance. A low thermal conductivity coating with twice the lifetime compared to the industrial standard today was fabricated in this work.
  •  
44.
  • Gupta, Mohit Kumar, 1986- (författare)
  • Design of Thermal Barrier Coatings : A modelling approach
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Atmospheric plasma sprayed (APS) thermal barrier coatings (TBCs) are commonly used for thermal protection of components in modern gas turbine application such as power generation, marine and aero engines. TBC is a duplex material system consisting of an insulating ceramic topcoat layer and an intermetallic bondcoat layer. TBC microstructures are highly heterogeneous, consisting of defects such as pores and cracks of different sizes which determine the coating's final thermal and mechanical properties, and the service lives of the coatings. Failure in APS TBCs is mainly associated with the thermo-mechanical stresses developing due to the thermally grown oxide (TGO) layer growth at the topcoat-bondcoat interface and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs.The objective of this thesis work was two-fold for one purpose: to design an optimised TBC to be used for next generation gas turbines. The first objective was to investigate the relationships between coating microstructure and thermal-mechanical properties of topcoats, and to utilise these relationships to design an optimised morphology of the topcoat microstructure. The second objective was to investigate the relationships between topcoat-bondcoat interface roughness, TGO growth and lifetime of TBCs, and to utilise these relationships to design an optimal interface. Simulation technique was used to achieve these objectives. Important microstructural parameters influencing the performance of topcoats were identified and coatings with the feasible identified microstructural parameters were designed, modelled and experimentally verified. It was shown that large globular pores with connected cracks inherited within the topcoat microstructure significantly enhanced TBC performance. Real topcoat-bondcoat interface topographies were used to calculate the induced stresses and a diffusion based TGO growth model was developed to assess the lifetime. The modelling results were compared with existing theories published in previous works and experiments. It was shown that the modelling approach developed in this work could be used as a powerful tool to design new coatings and interfaces as well as to achieve high performance optimised morphologies.
  •  
45.
  • Gupta, Mohit Kumar, 1986-, et al. (författare)
  • Development of bondcoat layer for long lifetime suspension plasma sprayed thermal barrier coatings
  • 2017
  • Ingår i: Proceedings of the International Thermal Spray Conference &amp; Exposition (ITSC 2017). - New York : Curran Associates, Inc. - 9781510858220 ; , s. 1158-1163
  • Konferensbidrag (refereegranskat)abstract
    • Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable to produce columnar microstructures similar to the conventionally used electron beam – physical vapour deposition (EB-PVD) process. Moreover, SPS is a significantly cheaper process and can also produce more porous coatings than EB-PVD. However, lifetime of SPS coatings needs to be improved further for them to be applicable in commercial applications.The bondcoat microstructure as well as topcoat-bondcoat interface topography affect the TBC lifetime significantly. The objective of this work was to investigate the feasibility of different bondcoat deposition process for SPS TBCs. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial NiCoCrAlY and PtAl bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
  •  
46.
  • Gupta, Mohit Kumar, 1986-, et al. (författare)
  • Development of bondcoats for high lifetime suspension plasma sprayed thermal barrier coatings
  • 2019
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 371:SI, s. 366-377
  • Tidskriftsartikel (refereegranskat)abstract
    • Fabrication of thermal barrier coatings (TBCs) by suspension plasma spraying (SPS) seems to be a promising alternative for the industry as SPS TBCs have the potential to provide lower thermal conductivity and longer lifetime than state-of-the-art allowing higher engine efficiency. Further improvements in lifetime of SPS TBCs and fundamental understanding of failure mechanisms in SPS TBCs are necessary for their widespread commercialisation. In this study, the influence of varying topcoat-bondcoat interface topography and bondcoat microstructure on lifetime was investigated. The objective of this work was to gain fundamental understanding of relationships between topcoat-bondcoat interface topography, bondcoat microstructure, and failure mechanisms in SPS TBCs. Seven sets of samples were produced in this study by keeping same bondcoat chemistry but varying feedstock particle size distributions and bondcoat spray processes. The topcoat chemistry and spray parameters were kept identical in all samples. Three-dimensional surface measurements along with scanning electron microscopy images were used to characterise bondcoat surface topography. The effect of varying interface topography and bondcoat microstructure on thermally grown oxide formation, stresses and lifetime was discussed. The results showed that varying bondcoat powder size distribution and spray process can have a significant effect on lifetime of SPS TBCs. Smoother bondcoats seemed to enhance the lifetime in case of SPS TBCs in case of same bondcoat chemistry and similar bondcoat microstructures. When considering the samples investigated in this study, samples with high velocity air-fuel (HVAF) bondcoats resulted in higher lifetime than other samples indicating that HVAF could be a suitable process for bondcoat deposition in SPS TBCs. © 2018 Elsevier B.V.
  •  
47.
  • Gupta, Mohit Kumar, 1986-, et al. (författare)
  • Development of plasma sprayed Ni/YSZ anodes for metal supported solidoxide fuel cells
  • 2017
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 318, s. 178-189
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid oxide fuel cells (SOFCs) offer a promising technique for producing electricity by clean energy conversionthrough an electrochemical reaction of fuel and air. Plasma spraying could be a potential manufacturing routefor commercial SOFCs, as it provides a distinct advantage especially in case of metal supported cells (MSCs) byallowing rapid processing at relatively low processing temperatures preventing thus the degradation of themetallicsubstrate. The objective of this work was to develop nickel/yttria stabilised zirconia (Ni/YSZ) anodes withhigh porosity and homogeneous phase distribution by atmospheric plasma spraying forMSCs. Various feedstockmaterial approaches were explored in this study, both with single injection aswell as separate injection of differentfeedstock materials , and with and without the use of pore formers to create additional porosity. The advantagesand issues with each material route were investigated and discussed. It was shown that agglomerated Ni/YSZ/polyester feedstock material resulted in the best distribution of Ni and YSZ in the anodemicrostructurewithhomogeneous porosity. Subsequently, the Ni/YSZ/polyester material route with different amounts and size distributionsof polyester was chosen to develop anode symmetrical cells using a commercial zirconia sheet as supportfor electrochemical testing. The Ni/YSZ/polyester anode powder with 10 wt.% standard size polyesterexhibited the best electrochemical performance. The results show that plasma spraying of the agglomeratedNi/YSZ/polyester could be a promising route to achieve high performance and rapid production anodes withoutusing the carcinogenic nickel oxide.
  •  
48.
  •  
49.
  • Gupta, Mohit Kumar, et al. (författare)
  • Electrochemical performance of plasma sprayed metal supported planar solid oxide fuel cells
  • 2015
  • Ingår i: ECS Transactions. - : The Electrochemical Society. - 1938-5862 .- 1938-6737. ; 68:1, s. 1791-1802
  • Tidskriftsartikel (refereegranskat)abstract
    • High production cost is one of the major barriers to widespread commercialization of solid oxide fuel cells (SOFCs). Thermal spray techniques are a low cost alternative for the production of SOFCs. The objective of this work was to evaluate the electrochemical performance of half-cells produced by plasma spraying. The anode was deposited on a porous metallic support by atmospheric plasma spraying (APS) whereas the electrolyte was deposited by plasma spray-thin film (PS-TF) technique which can produce thin and dense coatings at high deposition rates. The cathode was deposited by screen-printing. The electrochemical tests were performed at 650-800°C. Current-voltage characteristics and impedance spectra were measured and analyzed. The impact of electrolyte composition and layer thickness on the gas tightness of the electrolyte and the area specific resistance of the cell is discussed. The results show that the applied thermal spraying techniques are a potential alternative for producing SOFCs. © The Electrochemical Society.
  •  
50.
  • Gupta, Mohit Kumar, 1986-, et al. (författare)
  • Electrochemical Performance of Plasma Sprayed Metal Supported Planar Solid Oxide Fuel Cells
  • 2016
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 163:9, s. F1059-F1065
  • Tidskriftsartikel (refereegranskat)abstract
    • High production cost is one of the major barriers to widespread commercialization of solid oxide fuel cells (SOFCs). Thermal spraytechniques are a low cost alternative for the production of SOFCs. The objective of this work was to evaluate the electrochemicalperformance of cells produced by plasma spraying. The anode was deposited on a porous metallic support by atmospheric plasmaspraying (APS) whereas the electrolyte was deposited by plasma spray-thin film (PS-TF) technique, which can produce thin anddense coatings at high deposition rates. The cathode was deposited by screen-printing and in-operando sintering. The electrochemicaltests were performed at 650–800◦C. Current-voltage characteristics and impedance spectra were measured and analyzed. The impactof electrolyte composition and layer thickness on the gas tightness of the electrolyte and the area specific resistance of the cell isdiscussed. The results show that the applied thermal spraying techniques are a potential alternative for producing SOFCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 158
Typ av publikation
tidskriftsartikel (90)
konferensbidrag (49)
doktorsavhandling (6)
licentiatavhandling (6)
forskningsöversikt (4)
bokkapitel (2)
visa fler...
annan publikation (1)
visa färre...
Typ av innehåll
refereegranskat (121)
övrigt vetenskapligt/konstnärligt (36)
populärvet., debatt m.m. (1)
Författare/redaktör
Markocsan, Nicolaie, ... (138)
Nylén, Per, 1960- (55)
Joshi, Shrikant V., ... (28)
Gupta, Mohit Kumar, ... (27)
Li, Xin-Hai (18)
Markocsan, Nicolaie (18)
visa fler...
Björklund, Stefan, 1 ... (17)
Ganvir, Ashish, 1991 ... (16)
Mahade, Satyapal, 19 ... (15)
Li, X. H. (10)
Nylén, Per (9)
Svensson, Lars-Erik, ... (8)
Lyphout, Christophe, ... (7)
Björklund, Stefan (6)
Klement, Uta, 1962 (6)
Xiao, Ping (6)
Kjellman, Björn (5)
Östergren, Lars (5)
Wigren, J. (4)
Chen, Y. (3)
Peng, Ru (3)
Sadeghi, Esmaeil, 19 ... (3)
Bellippady, Madhura (3)
Joshi, Shrikant V. (3)
Zhao, X. (2)
Li, C. (2)
Li, Li (2)
Kjellman, B (2)
Jafari, Reza (2)
Phother Simon, Julie ... (2)
Eklund, Johan, 1991 (2)
Jafari, R (2)
Fisher, Gary (2)
Joshi, Shrikant, 196 ... (2)
Peng, Ru Lin, 1960- (2)
Roy, B. (2)
Klement, Uta (2)
Goutier, Simon (2)
Weber, André (2)
Bolelli, G. (2)
Berger, L.-M. (2)
Börner, T. (2)
Koivuluoto, H. (2)
Matikainen, V. (2)
Lusvarghi, L. (2)
Sassatelli, P. (2)
Trache, R. (2)
Peng, Ru Lin (2)
Trelles, Juan Pablo (2)
Vardelle, Armelle (2)
visa färre...
Lärosäte
Högskolan Väst (154)
Chalmers tekniska högskola (9)
Linköpings universitet (7)
Jönköping University (1)
Lunds universitet (1)
RISE (1)
Språk
Engelska (157)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Teknik (158)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy