SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martin Bastida A.) "

Sökning: WFRF:(Martin Bastida A.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Martin-Bastida, A., et al. (författare)
  • Motor associations of iron accumulation in deep grey matter nuclei in Parkinson's disease : A cross-sectional study of iron-related magnetic resonance imaging susceptibility
  • 2017
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101. ; 24:2, s. 357-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: To determine whether iron deposition in deep brain nuclei assessed using high-pass filtered phase imaging plays a role in motor disease severity in Parkinson's disease (PD). Methods: Seventy patients with mild to moderate PD and 20 age- and gender-matched healthy volunteers (HVs) underwent susceptibility-weighted imaging on a 3 T magnetic resonance imaging scanner. Phase shifts (radians) in deep brain nuclei were derived from high-pass filtered phase images and compared between groups. Analysis of clinical laterality and correlations with motor severity (Unified Parkinson's Disease Rating Scale, Part III, UPDRS-III) were performed. Phase shifts (in radians) were compared between HVs and three PD subgroups divided according to UPDRS-III scores using analysis of covariance, adjusting for age and regional area. Results: Parkinson's disease patients had significantly (P < 0.001) higher radians than HVs bilaterally in the putamen, globus pallidus and substantia nigra (SN). The SN contralateral to the most affected side showed higher radians (P < 0.001) compared to the less affected side. SN radians positively correlated with UPDRS-III and bradykinesia-rigidity subscores, but not with tremor subscores. ancova followed by post hoc Bonferroni-adjusted pairwise comparisons revealed that SN radians were significantly greater in the PD subgroup with higher UPDRS-III scores compared to both lowest UPDRS-III PD and HV groups (P < 0.001). Conclusions: Increased nigral iron accumulation in PD appears to be stratified according to disease motor severity and correlates with symptoms related to dopaminergic neurodegeneration. This semi-quantitative in vivo iron assessment could prove useful for objectively monitoring PD progression, especially in clinical trials concerning iron chelation therapies.
  •  
3.
  •  
4.
  •  
5.
  • Li, Weihua, et al. (författare)
  • Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson's disease
  • 2020
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated that basal ganglia functional connectivity is altered in Parkinson's disease (PD) as compared to healthy controls. However, such functional connectivity alterations have not been related to the dopaminergic deficits that occurs in PD over time. Objectives: To examine whether functional connectivity impairments are correlated with dopaminergic deficits across basal ganglia subdivisions in patients with PD both cross-sectionally and longitudinally. Methods: We assessed resting-state functional connectivity of basal ganglia subdivisions and dopamine transporter density using 11C-PE2I PET in thirty-four PD patients at baseline. Of these, twenty PD patients were rescanned after 19.9 ± 3.8 months. A seed-based approach was used to analyze resting-state fMRI data. 11C-PE2I binding potential (BPND) was calculated for each participant. PD patients were assessed for disease severity. Results: At baseline, PD patients with greater dopaminergic deficits, as measured with 11C-PE2I PET, showed larger decreases in posterior putamen functional connectivity with the midbrain and pallidum. Reduced functional connectivity of the posterior putamen with the thalamus, midbrain, supplementary motor area and sensorimotor cortex over time were significantly associated with changes in DAT density over the same period. Furthermore, increased motor disability was associated with lower intraregional functional connectivity of the posterior putamen. Conclusions: Our findings suggest that basal ganglia functional connectivity is related to integrity of dopaminergic system in patients with PD. Application of resting-state fMRI in a large cohort and longitudinal scanning may be a powerful tool for assessing underlying PD pathology and its progression.
  •  
6.
  • Roussakis, Andreas Antonios, et al. (författare)
  • Parkinson’s disease laterality : a 11C-PE2I PET imaging study
  • 2020
  • Ingår i: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459.
  • Tidskriftsartikel (refereegranskat)abstract
    • Asymmetry of striatal dopaminergic deficits and motor symptoms is a typical characteristic of idiopathic Parkinson’s disease (PD). This study aims to characterise the trend of asymmetry in moderate-stage PD. We performed a 19-month longitudinal study in 27 patients with PET-CT imaging and appropriate clinical assessments. 11C-PE2I non-displaceable binding potential (BPND) was calculated bilaterally for the striatum at baseline and follow-up to estimate the in vivo density of striatal dopamine transporters (DAT). Changes in striatal 11C-PE2I BPND over time were more prominent in the ipsilateral as compared to contralateral side. Changes in MDS-UPDRS-III (motor component of the Movement Disorders Society Unified PD Rating Scale) were not different between the clinically most and least affected body sides. Our data support that the asymmetry in striatal dopaminergic degeneration becomes less prominent in moderate-stage PD. In contrast, during the above period, the asymmetry of motor symptoms was maintained between the clinically most and least affected body sides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy