SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinez Abaigar J.) "

Sökning: WFRF:(Martinez Abaigar J.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Neale, R. E., et al. (författare)
  • Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020
  • 2021
  • Ingår i: Photochemical & Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-905X .- 1474-9092. ; 20, s. 1-67
  • Tidskriftsartikel (refereegranskat)abstract
    • This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
  •  
2.
  • Barnes, P. W., et al. (författare)
  • Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021
  • 2022
  • Ingår i: Photochemical & Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-905X .- 1474-9092. ; 31, s. 275-301
  • Tidskriftsartikel (refereegranskat)abstract
    • The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change. © 2022, The Author(s).
  •  
3.
  • Cremades, T, et al. (författare)
  • Kinematic changes during the cryopreservation of boar spermatozoa
  • 2005
  • Ingår i: Journal of Andrology. - : American Society of Andrology. - 0196-3635 .- 1939-4640. ; 26:5, s. 610-618
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study evaluates the effect that various steps of a conventional cycle of cryopreservation have on the patterns of movement exhibited by boar spermatozoa. Sperm-rich ejaculate fractions collected from 24 mature fertile boars (1 ejaculate per boar) were cryopreserved following a standard freeze-thaw procedure with 0.5-mL plastic straws. Overall sperm motility and the individual kinematic parameters of motile spermatozoa (assessed by the computer-aided sperm analysis system Sperm Class Analyzer [SCA]) were recorded in 5 steps of the cryopreservation procedure. These steps were as follows: 1) at the time that the fresh semen was extended, 2) at 17 degrees C, after sperm concentration by centrifugation and re-extension of the pellet with lactose-egg yolk extender; 3) at 5 degrees C, after added freezing extender; 4) at the time that thawed semen was held in a water bath at 37 degrees C for 30 minutes; and 5) at the time that thawed semen was held in a water bath at 37 degrees C for 150 minutes. Data from individual motile spermatozoa, defined by 7 kinematic parameters (curvilinear velocity [VCL], straight-line velocity [VSL], average path velocity [VAP], linearity [LIN], straightness [STR], mean amplitude of lateral head displacement [ALH], and beat cross frequency [BCF]), were analyzed using a pattern analysis technique (PATN) to identify and quantify populations and subpopulations of motile sperm within the semen samples. After the first cluster analysis, 3 motile sperm populations (P) were identified (P1: progressive and/or vigorous cells [90.4%], P2: poorly progressive cells [8.3%], and P3: nonprogressive cells [1.3%]). These populations remained constant (P greater than .05) throughout the 5-step cryopreservation procedure. A second PATN was carried out within the P1 sperm population, which identified 3 sperm subpopulations (sP) (eg, sP1: cells with progressive and vigorous movement [58.7%], sP2: progressive cells only [24.6%], and sP3: vigorous cells only, hyperactive-like [16.7%]). Although the relative frequency of these 3 subpopulations varied among ejaculates (boars), there was no interaction with any cryopreservation step we examined. Whereas sP1 remained constant (P greater than .05), sP2 and sP3 varied significantly (P less than .05) through the cryopreservation procedure, with the increase in sP3 after centrifugation at 17 degrees C and during cooling at 5 degrees C considered particularly relevant. In conclusion, the present study confirms the heterogeneity of sperm movement patterns in boar semen, patterns that vary through the cryopreservation procedure, especially after removal of the seminal plasma by centrifugation and subsequent extension at 17 degrees C and after the slow cooling at 5 degrees C, when obvious increases in hyperactivated movement appeared. The vast majority of spermatozoa, those exhibiting progressive and vigorous movement, remained constant during the cryopreservation procedure, although the proportion differed among boars.
  •  
4.
  • Patiño, Jairo, et al. (författare)
  • Unveiling the nature of a miniature world : a horizon scan of fundamental questions in bryology
  • 2022
  • Ingår i: Journal of Bryology. - : Informa UK Limited. - 0373-6687 .- 1743-2820. ; 44:1, s. 1-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction. Half a century since the creation of the International Association of Bryologists, we carried out a review to identify outstanding challenges and future perspectives in bryology. Specifically, we have identified 50 fundamental questions that are critical in advancing the discipline.Methods. We have adapted a deep-rooted methodology of horizon scanning to identify key research foci. An initial pool of 258 questions was prepared by a multidisciplinary and international working group of 32 bryologists. A series of online surveys completed by a broader community of researchers in bryology, followed by quality-control steps implemented by the working group, were used to create a list of top-priority questions. This final list was restricted to 50 questions with a broad conceptual scope and answerable through realistic research approaches.Key results. The top list of 50 fundamental questions was organised into four general topics: Bryophyte Biodiversity and Biogeography; Bryophyte Ecology, Physiology and Reproductive Biology; Bryophyte Conservation and Management; and Bryophyte Evolution and Systematics. These topics included 9, 19, 14 and 8 questions, respectively.Conclusions. Although many of the research challenges identified are not newly conceived, our horizon-scanning exercise has established a significant foundation for future bryological research. We suggest analytical and conceptual strategies and novel developments for potential use in advancing the research agenda for bryology.
  •  
5.
  • Robson, T. Matthew, et al. (författare)
  • A perspective on ecologically relevant plant-UV research and its practical application
  • 2019
  • Ingår i: Photochemical and Photobiological Sciences. - : Royal Society of Chemistry. - 1474-905X .- 1474-9092. ; 18:5, s. 970-988
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy