SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maser P.) "

Sökning: WFRF:(Maser P.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shameer, S., et al. (författare)
  • TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 43:D1, s. D637-D644
  • Tidskriftsartikel (refereegranskat)abstract
    • The metabolic network of a cell represents thecatabolic and anabolic reactions that interconvertsmall molecules (metabolites) through the activity ofenzymes, transporters and non-catalyzed chemicalreactions. Our understanding of individual metabolicnetworks is increasing as we learn more aboutthe enzymes that are active in particular cells underparticular conditions and as technologies advanceto allow detailed measurements of the cellularmetabolome. Metabolic network databases areof increasing importance in allowing us to contextualisedata sets emerging from transcriptomic,proteomic and metabolomic experiments. Here wepresent a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describesthe generic and condition-specific metabolic networkof Trypanosoma brucei, a parasitic protozoan responsiblefor human and animal African trypanosomiasis.In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have alsoimplemented a network-based representation of theinformation through MetExplore, yielding a novel environmentin which to visualise the metabolism ofthis important parasite.
  •  
2.
  • Choularton, T. W., et al. (författare)
  • The Great Dun Fell Cloud Experiment 1993 : An overview
  • 1997
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 31:16, s. 2393-2405
  • Tidskriftsartikel (refereegranskat)abstract
    • The 1993 Ground-based Cloud Experiment on Great Dun Fell used a wide range of measurements of trace gases, aerosol particles and cloud droplets at five sites to study their sources and sinks especially those in cloud. These measurements have been interpreted using a variety of models. The conclusions add to our knowledge of air pollution, acidification of the atmosphere and the ground, eutrophication and climate change. The experiment is designed to use the hill cap cloud as a flow-through reactor, and was conducted in varying levels of pollution typical of much of the rural temperate continental northern hemisphere in spring-time.
  •  
3.
  •  
4.
  • Bertoni, M. I., et al. (författare)
  • Nano-XRF and micro-Raman Studies of Metal Impurity Decoration around Dislocations in Multicrystalline Silicon
  • 2012
  • Ingår i: 2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC). - New York, USA : IEEE. - 9781467300667 ; , s. 1613-1616
  • Konferensbidrag (refereegranskat)abstract
    • We push the resolution limits of synchrotron-based nano-X-ray fluorescence mapping below 100 nm to investigate the fundamental differences between benign and deleterious dislocations in multicystalline silicon solar cells. We observe that after processing recombination-active dislocations contain a high degree of nanoscale iron and copper decoration, while recombination-inactive dislocations appear clean. To study the origins of the distinct metal decorations around different dislocations we analyze as-grown samples as well as specimens at different stages of processing. We complement our X-ray studies with micro-Raman mapping to understand the relationship between metallic decoration and stress fields around dislocations.
  •  
5.
  • Bertoni, M. I., 1967-, et al. (författare)
  • Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells
  • 2011
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 4, s. 4252-4257
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of centimeter-sized energy devices is regulated by inhomogeneously distributednanoscale defects. To improve device efficiency and reduce cost, accurate characterization of thesenanoscale defects is necessary. However, the multiscale nature of this problem presentsa characterization challenge, as non-destructive techniques often specialize in a single decade of lengthscales, and have difficulty probing non-destructively beneath the surface of materials with sub-micronspatial resolution. Herein, we push the resolution limits of synchrotron-based nanoprobe X-rayfluorescence mapping to 80 nm, to investigate a recombination-active intragranular defect in industrialsolar cells. Our nano-XRF measurements distinguish fundamental differences between benign anddeleterious dislocations in solar cell devices: we observe recombination-active dislocations to containa high degree of nanoscale iron and copper decoration, while recombination-inactive dislocationsappear clean. Statistically meaningful high-resolution measurements establish a connection betweencommercially relevant materials and previous fundamental studies on intentionally contaminatedmodel defect structures, pointing the way towards optimization of the industrial solar cell process.Moreover, this study presents a hierarchical characterization approach that can be broadly extended toother nanodefect-limited energy systems with the advent of high-resolution X-ray imaging beamlines
  •  
6.
  • Fuzzi, S., et al. (författare)
  • The Po Valley Fog Experiment 1989
  • 1992
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509. ; 44:5, s. 448-468
  • Tidskriftsartikel (refereegranskat)abstract
    • An outline is presented here of the Po Valley Fog Experiment 1989, carried out within the EUROTRAC‐GCE project. This experiment is a joint effort by several European research groups from 5 countries. The physical and chemical behaviour of the fog multiphase system was studied experimentally following the temporal evolution of the relevant chemical species in the different phases (gas, droplet, interstitial aerosol) and the evolution of micrometeorological and microphysical conditions, from the pre‐fog situation through the whole fog evolution, to the post‐fog period. Some general results, useful for describing the general features of the fog system, are presented here, while specific scientific questions on the different processes taking place within the system itself will be addressed in other companion papers of this same issue.
  •  
7.
  •  
8.
  • Janssen, Rene, et al. (författare)
  • Machine Learning Predicts the Presence of 2,4,6-Trinitrotoluene in Sediments of a Baltic Sea Munitions Dumpsite Using Microbial Community Compositions
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria are ubiquitous and live in complex microbial communities. Due to differences in physiological properties and niche preferences among community members, microbial communities respond in specific ways to environmental drivers, potentially resulting in distinct microbial fingerprints for a given environmental state. As proof of the principle, our goal was to assess the opportunities and limitations of machine learning to detect microbial fingerprints indicating the presence of the munition compound 2,4,6-trinitrotoluene (TNT) in southwestern Baltic Sea sediments. Over 40 environmental variables including grain size distribution, elemental composition, and concentration of munition compounds (mostly at pmol.g(-1) levels) from 150 sediments collected at the near-to-shore munition dumpsite Kolberger Heide by the German city of Kiel were combined with 16S rRNA gene amplicon sequencing libraries. Prediction was achieved using Random Forests (RFs); the robustness of predictions was validated using Artificial Neural Networks (ANN). To facilitate machine learning with microbiome data we developed the R package phyloseq2ML. Using the most classification-relevant 25 bacterial genera exclusively, potentially representing a TNT-indicative fingerprint, TNT was predicted correctly with up to 81.5% balanced accuracy. False positive classifications indicated that this approach also has the potential to identify samples where the original TNT contamination was no longer detectable. The fact that TNT presence was not among the main drivers of the microbial community composition demonstrates the sensitivity of the approach. Moreover, environmental variables resulted in poorer prediction rates than using microbial fingerprints. Our results suggest that microbial communities can predict even minor influencing factors in complex environments, demonstrating the potential of this approach for the discovery of contamination events over an integrated period of time. Proven for a distinct environment future studies should assess the ability of this approach for environmental monitoring in general.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy