SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mashonkina Lyudmila) "

Sökning: WFRF:(Mashonkina Lyudmila)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergemann, Maria, et al. (författare)
  • Solar oxygen abundance
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:2, s. 2236-2253
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform non-local thermodynamic equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R≈700000≈700000⁠, spatially resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O I lines at 777 nm yield the abundance of log A(O) = 8.74 ± 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O I] line at 630 nm is less model dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni I blend, the 630 nm line yields an abundance of log A(O) = 8.77 ± 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 ± 0.03 dex.
  •  
2.
  • Bergemann, Maria, et al. (författare)
  • The Gaia-ESO Survey : Hydrogen lines in red giants directly trace stellar mass
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples: age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows determining stellar masses and ages with an accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < T-eff < 5000 K, 0.5 < log g < 3.5, -2.0 < [ Fe/H] < 0.3, and luminosities log L/L-Sun < 2.5. Our analysis provides observational evidence that the H-alpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows obtaining simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies such as Andromeda or the Magellanic Clouds even with current instrumentation, such as the VLT and Keck facilities.
  •  
3.
  • Kielty, Collin L., et al. (författare)
  • The Pristine survey - XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:1, s. 1438-1461
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution optical spectra of 30 metal-poor stars selected from the Pristine survey are presented, based on observations taken with the Gemini Observatory GRACES spectrograph. Stellar parameters Teff and log g are determined using a Gaia DR2 colour–temperature calibration and surface gravity from the Stefan–Boltzmann equation. GRACES spectra are used to determine chemical abundances (or upper limits) for 20 elements (Li, O, Na, Mg, K, Ca, Ti, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). These stars are confirmed to be metal-poor ([Fe/H] < −2.5), with higher precision than from earlier medium-resolution analyses. The chemistry for most targets is similar to other extremely metal-poor stars in the Galactic halo. Three stars near [Fe/H] = −3.0 have unusually low Ca and high Mg, suggestive of contributions from few SN II where alpha-element formation through hydrostatic nucleosynthesis was more efficient. Three new carbon-enhanced metal-poor (CEMP) stars are also identified (two CEMP-s and one potential CEMP-no star) when our chemical abundances are combined with carbon from previous medium-resolution analyses. The GRACES spectra also provide precision radial velocities (σRV ≤ 0.2 km s−1) for dynamical orbit calculations with the Gaia DR2 proper motions. Most of our targets are dynamically associated with the Galactic halo; however, five stars with [Fe/H] < −3 have planar-like orbits, including one retrograde star. Another five stars are dynamically consistent with the Gaia-Sequoia accretion event; three have typical halo [α/Fe] ratios for their metallicities, whereas two are [Mg/Fe]-deficient, and one is a new CEMP-s candidate. These results are discussed in terms of the formation and early chemical evolution of the Galaxy.
  •  
4.
  • Korn, Andreas, et al. (författare)
  • Atomic Diffusion and Mixing in Old Stars : I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397
  • 2007
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 671:1, s. 402-419
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar parameter differences between groups of stars, are in good agreement with broadband and Strömgren photometry calibrated on the infrared flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 30% less abundant in the turnoff point stars than in the red giants. An abundance difference in lithium is seen between the turnoff point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti, and Fe) are compared with stellar structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the subprimordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.
  •  
5.
  •  
6.
  • Korn, Andreas J., et al. (författare)
  • New Abundances for Old Stars – Atomic Diffusion at Work in NGC 6397
  • 2006
  • Ingår i: The Messenger. - 0722-6691. ; 125, s. 6-10
  • Forskningsöversikt (populärvet., debatt m.m.)abstract
    • A homogeneous spectroscopic analysis of unevolved and evolved stars in the metal-poor globular cluster NGC 6397 with FLAMES-UVES reveals systematic trends of stellar surface abundances that are likely caused by atomic diffu-sion. This finding helps to understand, among other issues, why the lithium abundances of old halo stars are sig-nificantly lower than the abundance found to be produced shortly after the Big Bang.
  •  
7.
  • Mashonkina, Lyudmila, et al. (författare)
  • A Non-LTE Study of Neutral and Singly-ionized Calcium in Late-type Stars
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 461:1, s. 261-275
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Non-local thermodynamical equilibrium (NLTE) line formation for neutral and singly-ionized calcium is considered through a range of spectral types when the Ca abundance varies from the solar value down to [Ca/H] = -5. We evaluate the influence of departures from LTE on Ca abundance determinations and inspect the possibility of using Cal / Ca II line-strength ratios as indicators of surface gravity for extremely metal-poor stars. Methods. A comprehensive model atom for Cal and Call is presented. Accurate radiative and electron collisional atomic data are incorporated. The role of inelastic collisions with hydrogen atoms in the statistical equilibrium of Ca I/II is estimated empirically from inspection of their different influences on the Cal and Call lines in selected stars with well determined stellar parameters and high-quality observed spectra. Results. The dependence of NLTE effects on the atmospheric parameters is discussed. Departures from LTE significantly affect the profiles of Cal lines over the whole range of stellar parameters being considered. However, at [Ca/H] ≥ -2, NLTE abundance correction of individual lines have a low absolute value due to the different influence of NLTE effects on line wings and the line core. At lower Ca abundances, NLTE leads to systematically depleted total absorption in the line and positive abundance corrections, exceeding +0.5 dex for Cal λ4226 at [Ca/H] = -4.9. In contrast, the NLTE effects strengthen the Call lines and lead to negative abundance corrections. NLTE corrections are small, <0.02 dex, for the Call resonance lines, and they grow in absolute value with decreasing Ca abundance for the IR lines of multiplet 3d-4p, exceeding 0.4 dex in the metal-poor models with [Fe/H] < -3. As a test and first application of the Ca I/II model atom, Ca abundances are determined on the basis of plane-parallel LTE model atmospheres for the Sun, Procyon (F IV-V), and seven metal-poor stars, using high S/N and high-resolution spectra at visual and near-IR wavelengths. Lines of Ca I and Ca II give consistent abundances for all objects (except Procyon) when collisions with hydrogen atoms are taken into account. The derived absolute solar Ca abundance (from Cal and Call lines) is log εCa.⊙ = 6.38 ± 0.06. For Procyon, the mean Ca abundance from Cal lines is markedly subsolar, [Ca/H] = -0.14 ± 0.03. All metal-poor stars within our sample show an overabundance of calcium relative to iron with [Ca/Fe] abundance ratios of 0.26 to 0.46 that are typical of the halo population. The W(Ca I4226) / W(Ca II8498) equivalent width ratio is predicted to be sensitive to surface gravity for extremely metal-poor stars, while this is not the case for the ratio involving the Ca II resonance line(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy