SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Masters Colin L.) "

Sökning: WFRF:(Masters Colin L.)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhiman, Kunal, et al. (författare)
  • Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer's disease.
  • 2020
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assessed the utility of cerebrospinal fluid (CSF) neurofilament light (NfL) in Alzheimer's disease (AD) diagnosis, its association with amyloid and tau pathology, as well as its potential to predict brain atrophy, cognition, and amyloid accumulation.CSF NfL concentration was measured in 221 participants from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL).CSF NfL levels as well as NfL/amyloid β (Aβ42) were significantly elevated in AD compared to healthy controls (HC; P < .001), and in mild cognitive impairment (MCI) compared to HC (P = .008 NfL; P < .001 NfL/Aβ42). CSF NfL and NfL/Aβ42 differentiated AD from HC with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 and 0.90, respectively. CSF NfL and NfL/Aβ42 predicted cortical amyloid load, brain atrophy, and cognition.CSF NfL is a biomarker of neurodegeneration, correlating with cognitive impairment and brain neuropathology.
  •  
2.
  • Khan, Wasim, et al. (författare)
  • A Multi-Cohort Study of ApoE epsilon 4 and Amyloid-beta Effects on the Hippocampus in Alzheimer's Disease
  • 2017
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 56:3, s. 1159-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer's disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-beta (A beta) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compare hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in epsilon 4 carriers with positron emission tomography (PET) A beta who were dichotomized (A beta+/A beta-) using previous cut-offs. We found a linear reduction in hippocampal volumes with epsilon 4 carriers possessing the smallest volumes, epsilon 3 carriers possessing intermediate volumes, and epsilon 2 carriers possessing the largest volumes. Moreover, AD and MCI epsilon 4 carriers possessed the smallest hippocampal volumes and control epsilon 2 carriers possessed the largest hippocampal volumes. Subjects with both APOE epsilon 4 and A beta positivity had the lowest hippocampal volumes when compared to A beta-epsilon 4 carriers, suggesting a synergistic relationship between APOE epsilon 4 and A beta. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE epsilon 4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
  •  
4.
  • Chatterjee, Pratishtha, et al. (författare)
  • Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:6, s. 1141-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
  •  
5.
  • Delaby, Constance, et al. (författare)
  • Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:10, s. 1868-1879
  • Tidskriftsartikel (refereegranskat)abstract
    • The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests.We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients.The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis.This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
  •  
6.
  • Dhiman, Kunal, et al. (författare)
  • Cerebrospinal fluid levels of fatty acid-binding protein 3 are associated with likelihood of amyloidopathy in cognitively healthy individuals.
  • 2022
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty acid-binding protein 3 (FABP3) is a biomarker of neuronal membrane disruption, associated with lipid dyshomeostasis-a notable Alzheimer's disease (AD) pathophysiological change. We assessed the association of cerebrospinal fluid (CSF) FABP3 levels with brain amyloidosis and the likelihood/risk of developing amyloidopathy in cognitively healthy individuals.FABP3 levels were measured in CSF samples of cognitively healthy participants, > 60 years of age (n = 142), from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL).FABP3 levels were positively associated with baseline brain amyloid beta (Aβ) load as measured by standardized uptake value ratio (SUVR, standardized β=0.22, P = .009) and predicted the change in brain Aβ load (standardized β=0.32, P = .004). Higher levels of CSF FABP3 (above median) were associated with a likelihood of amyloidopathy (odds ratio [OR] 2.28, 95% confidence interval [CI] 1.12 to 4.65, P = .023).These results support inclusion of CSF FABP3 as a biomarker in risk-prediction models of AD.
  •  
7.
  • Faux, Noel G, et al. (författare)
  • PBT2 Rapidly Improves Cognition in Alzheimer's Disease : Additional Phase II Analyses
  • 2010
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 20:2, s. 509-516
  • Tidskriftsartikel (refereegranskat)abstract
    • PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimer's disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta_{42}, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis. Ranking the responses to treatment after 12 weeks with placebo, PBT2 50 mg, and PBT2 250 mg revealed that the proportions of patients showing improvement on NTB Composite or Executive Factor z-scores were significantly greater in the PBT2 250 mg group than in the placebo group. Receiver-operator characteristic analyses revealed that the probability of an improver at any level coming from the PBT2 250 mg group was significantly greater, compared to placebo, for Composite z-scores (Area Under the Curve [AUC] =0.76, p=0.0007), Executive Factor z-scores (AUC =0.93, p=1.3 x 10;{-9}), and near-significant for the ADAS-cog (AUC =0.72, p=0.056). There were no correlations between changes in CSF amyloid-beta or tau species and cognitive changes. These findings further encourage larger-scale testing of PBT2 for AD.
  •  
8.
  • Naylor, Mary D, et al. (författare)
  • Advancing Alzheimer's disease diagnosis, treatment, and care: recommendations from the Ware Invitational Summit.
  • 2012
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 8:5, s. 445-52
  • Tidskriftsartikel (refereegranskat)abstract
    • To address the pending public health crisis due to Alzheimer's disease (AD) and related neurodegenerative disorders, the Marian S. Ware Alzheimer Program at the University of Pennsylvania held a meeting entitled "State of the Science Conference on the Advancement of Alzheimer's Diagnosis, Treatment and Care," on June 21-22, 2012. The meeting comprised four workgroups focusing on Biomarkers; Clinical Care and Health Services Research; Drug Development; and Health Economics, Policy, and Ethics. The workgroups shared, discussed, and compiled an integrated set of priorities, recommendations, and action plans, which are presented in this article.
  •  
9.
  • Ossenkoppele, Rik, et al. (författare)
  • Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:11, s. 2381-2387
  • Tidskriftsartikel (refereegranskat)abstract
    • A major unanswered question in the dementia field is whether cognitively unimpaired individuals who harbor both Alzheimer's disease neuropathological hallmarks (that is, amyloid-β plaques and tau neurofibrillary tangles) can preserve their cognition over time or are destined to decline. In this large multicenter amyloid and tau positron emission tomography (PET) study (n = 1,325), we examined the risk for future progression to mild cognitive impairment and the rate of cognitive decline over time among cognitively unimpaired individuals who were amyloid PET-positive (A+) and tau PET-positive (T+) in the medial temporal lobe (A+TMTL+) and/or in the temporal neocortex (A+TNEO-T+) and compared them with A+T- and A-T- groups. Cox proportional-hazards models showed a substantially increased risk for progression to mild cognitive impairment in the A+TNEO-T+ (hazard ratio (HR) = 19.2, 95% confidence interval (CI) = 10.9-33.7), A+TMTL+ (HR = 14.6, 95% CI = 8.1-26.4) and A+T- (HR = 2.4, 95% CI = 1.4-4.3) groups versus the A-T- (reference) group. Both A+TMTL+ (HR = 6.0, 95% CI = 3.4-10.6) and A+TNEO-T+ (HR = 7.9, 95% CI = 4.7-13.5) groups also showed faster clinical progression to mild cognitive impairment than the A+T- group. Linear mixed-effect models indicated that the A+TNEO-T+ (β = -0.056 ± 0.005, T = -11.55, P < 0.001), A+TMTL+ (β = -0.024 ± 0.005, T = -4.72, P < 0.001) and A+T- (β = -0.008 ± 0.002, T = -3.46, P < 0.001) groups showed significantly faster longitudinal global cognitive decline compared to the A-T- (reference) group (all P < 0.001). Both A+TNEO-T+ (P < 0.001) and A+TMTL+ (P = 0.002) groups also progressed faster than the A+T- group. In summary, evidence of advanced Alzheimer's disease pathological changes provided by a combination of abnormal amyloid and tau PET examinations is strongly associated with short-term (that is, 3-5 years) cognitive decline in cognitively unimpaired individuals and is therefore of high clinical relevance.
  •  
10.
  • Cappai, Roberto, et al. (författare)
  • The amyloid precursor protein(APP)of Alzheimer's disease and its paralog APLP2 modulate the Cu/Zn-NO-catalyzed degradation of glypican-1 heparan sulfate In vivo.
  • 2005
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 280:14, s. 13913-13920
  • Tidskriftsartikel (refereegranskat)abstract
    • Processing of the recycling proteoglycan glypican-1 involves the release of its heparan sulfate chains by copper ion- and nitric oxide-catalyzed ascorbate-triggered autodegradation. The Alzheimer disease amyloid precursor protein (APP) and its paralogue, the amyloid precursor-like protein 2 (APLP2), contain copper ion-, zinc ion-, and heparan sulfate-binding domains. We have investigated the possibility that APP and APLP2 regulate glypican-1 processing during endocytosis and recycling. By using cell-free biochemical experiments, confocal laser immunofluorescence microscopy, and flow cytometry of tissues and cells from wild-type and knock-out mice, we find that (a) APP and glypican-1 colocalize in perinuclear compartments of neuroblastoma cells, (b) ascorbate-triggered nitric oxidecatalyzed glypican-1 autodegradation is zinc ion-dependent in the same cells, (c) in cell-free experiments, APP but not APLP2 stimulates glypican-1 autodegradation in the presence of both Cu(II) and Zn(II) ions, whereas the Cu(I) form of APP and the Cu(II) and Cu(I) forms of APLP2 inhibit autodegradation, (d) in primary cortical neurons from APP or APLP2 knock-out mice, there is an increased nitric oxide-catalyzed degradation of heparan sulfate compared with brain tissue and neurons from wild-type mice, and (e) in growth-quiescent fibroblasts from APLP2 knock-out mice, but not from APP knock-out mice, there is also an increased heparan sulfate degradation. We propose that the rate of autoprocessing of glypican-1 is modulated by APP and APLP2 in neurons and by APLP2 in fibroblasts. These observation identify a functional relationship between the heparan sulfate and copper ion binding activities of APP/APLP2 in their modulation of the nitroxyl anion-catalyzed heparan sulfate degradation in glypican-1.
  •  
11.
  • Eratne, Dhamidhu, et al. (författare)
  • Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors
  • 2022
  • Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Distinguishing behavioural variant frontotemporal dementia (bvFTD) from non-neurodegenerative ‘non-progressor’ mimics of frontal lobe dysfunction, can be one of the most challenging clinical dilemmas. A biomarker of neuronal injury, neurofilament light chain (NfL), could reduce misdiagnosis and delay. Methods: Cerebrospinal fluid (CSF) NfL, amyloid beta 1–42 (AB42), total and phosphorylated tau (T-tau, P-tau) levels were examined in patients with an initial diagnosis of bvFTD. Based on follow-up information, patients were categorised as Progressors or Non-Progressors: further subtyped into Non-Progressor Revised (non-neurological/neurodegenerative final diagnosis), and Non-Progressor Static (static deficits, not fully explained by non-neurological/neurodegenerative causes). Results: Forty-three patients were included: 20 Progressors, 23 Non-Progressors (15 Non-Progressor Revised, 8 Non-Progressor Static), and 20 controls. NfL concentrations were lower in Non-Progressors (Non-Progressors Mean, M = 554 pg/mL, 95%CI:[461, 675], Non-Progressor Revised M = 459 pg/mL, 95%CI:[385, 539], and Non-Progressor Static M = 730 pg/mL, 95%CI:[516, 940]), compared to Progressors (M = 2397 pg/mL, 95%CI:[1607, 3332]). NfL distinguished Progressors from Non-Progressors with the highest accuracy (area under the curve 0.92, 90%/87% sensitivity/specificity, 86%/91% positive/negative predictive value, 88% accuracy). Non-Progressor Static tended to have higher T-tau and P-tau levels compared to Non-Progressor Revised Diagnoses. Conclusion: This study demonstrated strong diagnostic utility of CSF NfL to distinguish bvFTD from non-progressor variants, at baseline, with high accuracy, in a real-world clinical setting. This has important clinical implications, to improve outcomes for patients and clinicians facing this challenging clinical dilemma, healthcare services, and clinical trials. Further research is required to investigate heterogeneity within the non-progressor group and potential diagnostic algorithms, and prospective studies are underway assessing plasma NfL.
  •  
12.
  • Insel, Philip S., et al. (författare)
  • Determining clinically meaningful decline in preclinical Alzheimer disease
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:4, s. 322-333
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To determine the time required for a preclinical Alzheimer disease population to decline in a meaningful way, use estimates of decline to update previous clinical trial design assumptions, and identify factors that modify β-amyloid (Aβ)-related decline. METHODS: In 1,120 cognitively unimpaired individuals from 3 international cohorts, we estimated the relationship between Aβ status and longitudinal changes across multiple cognitive domains and assessed interactions between Aβ and baseline factors. Power analyses were performed to explore sample size as a function of treatment effect. RESULTS: Cognitively unimpaired Aβ+ participants approach mild cognitive impairment (MCI) levels of performance 6 years after baseline, on average. Achieving 80% power in a simulated 4-year treatment trial, assuming a 25% treatment effect, required 2,000 participants/group. Multiple factors interacted with Aβ to predict cognitive decline; however, these findings were all cohort-specific. Despite design differences across the cohorts, with large sample sizes and sufficient follow-up time, the Aβ+ groups declined consistently on cognitive composite measures. CONCLUSIONS: A preclinical AD population declines to the cognitive performance of an early MCI population in 6 years. Slowing this rate of decline by 40%-50% delays clinically relevant impairment by 3 years-a potentially meaningful treatment effect. However, assuming a 40%-50% drug effect highlights the difficulties in preclinical AD trial design, as a more commonly assumed treatment effect of 25% results in a required sample size of 2,000/group. Designers of preclinical AD treatment trials need to prepare for larger and longer trials than are currently being considered. Interactions with Aβ status were inconsistent and not readily generalizable.
  •  
13.
  • Kang, Matthew J.Y., et al. (författare)
  • Cerebrospinal fluid neurofilament light predicts longitudinal diagnostic change in patients with psychiatric and neurodegenerative disorders
  • 2023
  • Ingår i: Acta Neuropsychiatrica. - 0924-2708. ; 36:1, s. 17-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown. Methods We collected longitudinal diagnostic information (mean=36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other), and PSY. We pre-specified NfL>582pg/mL as indicative of ND/MCI/other. Results Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone. Conclusions CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.
  •  
14.
  • Lannfelt, Lars, et al. (författare)
  • Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial.
  • 2008
  • Ingår i: Lancet neurology. - 1474-4422 .- 1474-4465. ; 7:9, s. 779-86
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: PBT2 is a metal-protein attenuating compound (MPAC) that affects the Cu2(+)-mediated and Zn2(+)-mediated toxic oligomerisation of Abeta seen in Alzheimer's disease (AD). Strong preclinical efficacy data and the completion of early, clinical safety studies have preceded this phase IIa study, the aim of which was to assess the effects of PBT2 on safety, efficacy, and biomarkers of AD. METHODS: Between December 6, 2006, and September 21, 2007, community-dwelling patients over age 55 years were recruited to this 12-week, double-blind, randomised trial of PBT2. Patients were randomly allocated to receive 50 mg PBT2, 250 mg PBT2, or placebo. Inclusion criteria were early AD (mini-mental state examination [MMSE] score between 20 and 26 points or Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) score between 10 and 25 points), taking a stable dose of acetylcholinesterase inhibitor (donepezil, galantamine, or rivastigmine) for at least 4 months, a modified Hachinski score of 4 points or less, and CT or MRI results that were consistent with AD. The principal outcomes were safety and tolerability. Secondary outcomes were plasma and CSF biomarkers and cognition. Analysis was intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00471211. FINDINGS: 78 patients were randomly assigned (29 to placebo, 20 to PBT2 50 mg, and 29 to PBT2 250 mg) and 74 (95%) completed the study. 42 (54%) patients had at least one treatment emergent adverse event (10 [50%] on PBT2 50 mg, 18 [62%] on PBT2 250 mg, and 14 [48%] on placebo). No serious adverse events were reported by patients on PBT2. Patients treated with PBT2 250 mg had a dose-dependent (p=0.023) and significant reduction in CSF Abeta(42) concentration compared with those treated with placebo (difference in least squares mean change from baseline was -56.0 pg/mL, 95% CI -101.5 to -11.0; p=0.006). PBT2 had no effect on plasma biomarkers of AD or serum Zn(2+) and Cu(2+) concentrations. Cognition testing included ADAS-cog, MMSE, and a neuropsychological test battery (NTB). Of these tests, two executive function component tests of the NTB showed significant improvement over placebo in the PBT2 250 mg group: category fluency test (2.8 words, 0.1 to 5.4; p=0.041) and trail making part B (-48.0 s, -83.0 to -13.0; p=0.009). INTERPRETATION: The safety profile is favourable for the ongoing development of PBT2. The effect on putative biomarkers for AD in CSF but not in plasma is suggestive of a central effect of the drug on Abeta metabolism. Cognitive efficacy was restricted to two measures of executive function. Future trials that are larger and longer will establish if the effects of PBT2 on biomarkers and cognition that are reported here translate into clinical effectiveness.
  •  
15.
  • Levin, Johannes, et al. (författare)
  • α-Synuclein seed amplification assay detects Lewy body co-pathology in autosomal dominant Alzheimer's disease late in the disease course and dependent on Lewy pathology burden
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260. ; 20:6, s. 4351-4365
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. Highlights: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.
  •  
16.
  • Li, Yan, et al. (författare)
  • Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques
  • 2022
  • Ingår i: Neurology. - 0028-3878. ; 98:7, s. 688-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives To determine the diagnostic accuracy of a plasma Aβ42/Aβ40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols.MethodsPlasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aβ42/Aβ40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aβ42/Aβ40.ResultsIn the combined cohort of 465 participants, plasma Aβ42/Aβ40 had good concordance with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.80-0.87); concordance improved with the inclusion of APOE ϵ4 carrier status (AUC 0.88, 95% CI 0.85-0.91). The AUC of plasma Aβ42/Aβ40 with CSF amyloid status was 0.85 (95% CI 0.78-0.91) and improved to 0.93 (95% CI 0.89-0.97) with APOE ϵ4 status. These findings were consistent across the 3 cohorts, despite differences in protocols. The assay performed similarly in both cognitively unimpaired and impaired individuals.DiscussionPlasma Aβ42/Aβ40 is a robust measure for detecting amyloid plaques and can be utilized to aid in the diagnosis of AD, identify those at risk for future dementia due to AD, and improve the diversity of populations enrolled in AD research and clinical trials.Classification of EvidenceThis study provides Class II evidence that plasma Aβ42/Aβ40, as measured by a high precision IPMS assay, accurately diagnoses brain amyloidosis in both cognitively unimpaired and impaired research participants.
  •  
17.
  • Pavlik, Valory N., et al. (författare)
  • Connecting Cohorts to Diminish Alzheimer's Disease (CONCORD-AD) : A Report of an International Research Collaboration Network
  • 2022
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 85:1, s. 31-45
  • Forskningsöversikt (refereegranskat)abstract
    • Longitudinal observational cohort studies are being conducted worldwide to understand cognition, biomarkers, and the health of the aging population better. Cross-cohort comparisons and networks of registries in Alzheimer's disease (AD) foster scientific exchange, generate insights, and contribute to the evolving clinical science in AD. A scientific working group was convened with invited investigators from established cohort studies in AD, in order to form a research collaboration network as a resource to address important research questions. The Connecting Cohorts to Diminish Alzheimer's Disease (CONCORD-AD) collaboration network was created to bring together global resources and expertise, to generate insights and improve understanding of the natural history of AD, to inform design of clinical trials in all disease stages, and to plan for optimal patient access to disease-modifying therapies once they become available. The network brings together expertise and data insights from 7 cohorts across Australia, Europe, and North America. Notably, the network includes populations recruited through memory clinics as well as population-based cohorts, representing observations from individuals across the AD spectrum. This report aims to introduce the CONCORD-AD network, providing an overview of the cohorts involved, reporting the common assessments used, and describing the key characteristics of the cohort populations. Cohort study designs and baseline population characteristics are compared, and available cognitive, functional, and neuropsychiatric symptom data, as well as the frequency of biomarker assessments, are summarized. Finally, the challenges and opportunities of cross-cohort studies in AD are discussed.
  •  
18.
  • Schindler, Suzanne E., et al. (författare)
  • Maximizing Safety in the Conduct of Alzheimer's Disease Fluid Biomarker Research in the Era of COVID-19
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1387-2877. ; 76:1, s. 27-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The coronavirus disease 2019 (COVID-19) pandemic led to an abrupt halt of many Alzheimer's disease (AD) research studies at sites spanning the world. This is especially true for studies requiring in-person contact, such as studies collecting biofluids. Since COVID-19 is likely to remain a threat for an extended period, the resumption of fluid biomarker studies requires the development and implementation of procedures that minimize the risk of in-person visits to participants, staff, and individuals handling the biofluid samples. Some issues to consider include structuring the visit workflow to minimize contacts and promote social distancing; screening and/or testing participants and staff for COVID-19; wearing masks and performing hand hygiene; and precautions for handling, storing, and analyzing biofluids. AD fluid biomarker research remains a vitally important public health priority and resuming studies requires appropriate safety procedures to protect research participants and staff.
  •  
19.
  • Schubert, Walter, et al. (författare)
  • Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites
  • 1991
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993 .- 1872-6240. ; 563:1-2, s. 184-194
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that the amyloid beta A4 precursor protein (APP) is synthesized in neurons and undergoes fast axonal transport to synaptic sites [Koo et al., Proc. Natl. Acad. Sci. U.S.A., 87 (1990) 1561-1565]. Using immunofluorescence, laser confocal microscopy and immunoelectron microscopy with simultaneous detection of APP and synaptophysin, we now report a preferential localization of APP at synaptic sites of human and rat brain and at neuromuscular junctions. APP is further found on vesicular elements of neuronal perikarya, dendrites and axons. The synaptic localization of APP implies (1) a role of APP in physiological synaptic activity and (2) a potential and early impairment of central synapses when synaptic APP is converted to beta A4 amyloid during the pathological evolution of Alzheimer's disease and Down's syndrome.
  •  
20.
  • Westermark, Per, et al. (författare)
  • A primer of amyloid nomenclature
  • 2007
  • Ingår i: Amyloid. - : Informa UK Limited. - 1350-6129 .- 1744-2818. ; 14:3, s. 179-183
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing knowledge of the exact biochemical nature of the localized and systemic amyloid disorders has made a logical and easily understood nomenclature absolutely necessary. Such a nomenclature, biochemically based, has been used for several years but the current literature is still mixed up with many clinical and histochemically based designations from the time when amyloid in general was poorly understood. All amyloid types are today preferably named by their major fibril protein. This makes a simple and rational nomenclature for the increasing number of amyloid disorders known in humans and animals.
  •  
21.
  •  
22.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy