SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mathew Aji Professor) "

Sökning: WFRF:(Mathew Aji Professor)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fijoł, Natalia, 1994- (författare)
  • 3D printing of Green Water Purification Filters : Design towards Sustainable and Scalable Biocomposite Materials
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The globally escalating water pollution and water scarcity necessitates the development of efficient and sustainable water treatment technologies. This thesis investigates the feasibility of utilizing renewable and waste materials in the form of green composites for the fabrication of water purification filters via Fused Deposition Modelling (FDM).The first system studied within this thesis is based on the biobased thermoplastic polymer - polylactic acid (PLA), which serves as a composite matrix that is reinforced and functionalized with an array of green materials including fish-scale extracted hydroxyapatite (HAp), 2,2,6,6 – tetramethylpiperdine-1-oxyl (TEMPO) - oxidized cellulose nanofibers (TCNF), chitin nanofibers (ChNF), and bioinspired metal-organic framework – SU-101. All the developed PLA-based biocomposites exhibited great design flexibility and excellent printability, leading to the development of high surface-finish quality water purification filters of various geometries and porosity architectures. The developed filters successfully removed various contaminants from water. High capability for removal of metal ions from both, model solutions (reaching removal capacity towards Cu2+ ions of 208 mg/gNF and 234 mg/gNF for ChNF/PLA and TCNF/PLA filters, respectively, compared to only 4 mg/g for PLA filters), as well as from an actual mine effluent, reaching removal efficiency towards i.a. Mn2+ ions of over 50 % was demonstrated. Moreover, the developed TCNF/PLA and ChNF/PLA filters successfully removed microplastics from laundry effluent with over 70 % separation efficiency. The PLA-based biocomposite filters surface-functionalized with SU-101 were also suitable for the removal of cationic dye, methylene blue (MB), from water with removal efficiencies of over 40 %.The second composite system explored the possibility of using post-consumer polycotton textile waste as a functional entity for the polyethylene terephthalate glycol (PETG) matrix, for the fabrication of 3D printing filaments, which can be further processed into highly functional water purification filters by the FDM. The conducted TEMPO-mediated oxidation of the polycotton garments introduced negatively charged carboxylic groups onto the 3D printing filament’s surface and consequently, onto the 3D printed structures, yielding filters suitable for removal of cationic dyes, such as MB, from water.Apart from being evaluated for their ability to remove various contaminants from water, the filters have been subjected to a series of tests to assess the homogeneity of the filler dispersion in the polymer matrix as well as the filters’ permeability and mechanical stability. The high throughput character of the filters was demonstrated, as e.g., for the HAp/PLA filters the calculated flux reached 2x106 Lm-2h-1bar-1. The reinforcing impact of the nanospecies on the polymer matrix in the gradient porosity filters was investigated and so, it was shown that the addition of ChNF and TCNF fibers into PLA increases their Young’s modulus value from 550.7 ± 2.8 MPa, to 622.7 ± 1.6 MPa and 702.9 ± 5.4 MPa, respectively. Moreover, the lifespan of the filters was assessed by subjecting them to an accelerated ageing procedure in water, which have shown that the TCNF/PLA and ChNF/PLA filters could serve up to eight and five months, respectively, while maintaining their functionality and good mechanical performance. Furthermore, the study revealed that the filters are indeed biodegradable, as after prolonged exposure to water at elevated temperatures, they have fully disintegrated.Overall, the obtained results demonstrate the feasibility of combining renewable and recycled materials with 3D printing technology to create water purification filters suitable for the removal of a wide variety of contaminants from water.
  •  
2.
  • Herrera Vargas, Natalia (författare)
  • Processing and properties of nanocomposites based on polylactic acid, chitin and cellulose
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The production of bio-based and biodegradable nanocomposites has gained attention during recent years for environmental reasons; however, the large-scale production of these nanocomposites still poses challenges. The objective of this work has been to prepare bio-based and biodegradable nanocomposites via liquid-assisted extrusion and to gain a deeper understanding of the process and the relationship between the process, composition, structure and properties. Extrusion is a common industrial process and thus, the development of this technique for the preparation of bionanocomposites can promote the commercialization of these materials in future.In this work, nanocomposites based on polylactic acid (PLA), cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and chitin nanocrystals (ChNC) with varying nanomaterial content were prepared via liquid-assisted extrusion using a plasticizer as a dispersing and processing aid. This process consists of dispersing the nanomaterial in a liquid composed of water, a plasticizer and/or a solvent, and then feeding this suspension directly into the extruder during the process. To be able to carry out this process successfully, parameters such as the amount of liquid, the liquid feeding rate or the water-to-solvent ratio, among others, should be taken in account.CNF and ChNC were produced from banana rachis waste and crustacean waste, respectively, whereas CNC were available as a commercial product. Glycerol triacetate (GTA) and triethyl citrate (TEC) were used as plasticizers, dispersing and processing aids. The effects of the liquids used during extrusion, the plasticizers and the nanomaterials in the PLA properties were studied. Furthermore, the effects of the cooling rate during the compression molding and the solid-state drawing on the properties of the PLA nanocomposites were investigated. Additionally, the effect of ChNC on the processing and properties of blown films was evaluated.The results presented in this work demonstrated that the use of water and a solvent during the liquid-assisted extrusion did not decrease the molecular weight of the PLA. It was also found that the feeding of nanomaterials in aqueous or aqueous/solvent suspension resulted in PLA micro-composite with lower mechanical properties than PLA. However, when a nanomaterial was fed together with a plasticizer, its dispersion and distribution into the PLA were progressively improved with increasing plasticizer content. The plasticized PLA nanocomposites showed improved properties compared to their respective counterpart without nanomaterials when the plasticizer content was ≥7.5 wt%. Furthermore, it was demonstrated that the properties of PLA can be tailored through the composition of the nanocomposite or during the processing. It was observed that the modification of PLA with only plasticizer in high amounts (20 wt%) resulted in enhanced elongation at break and toughness but it had negative effects on the thermal and mechanical properties; however, the incorporation of nanomaterials minimized these effects. The addition of a small amount of nanomaterial (1 wt%), either CNF, CNC or ChNC, to plasticized PLA resulted in enhanced mechanical properties. It was also demonstrated that the cooling rate during compression molding and the solid-state drawing significantly affected the crystallinity of the PLA nanocomposites and, thus, their final properties. The fast cooling rate during compression molding resulted in more flexible and transparent materials than when a slow cooling rate was used, and as a result, PLA films with different mechanical properties were obtained. The drawing of the PLA/CNF nanocomposite at a drawing temperature slightly above the Tg, a high draw speed and at the highest drawing ratio, resulted in the highest mechanical properties. It was also found that the increased toughness after adding CNF to the plasticized PLA or after drawing the PLA/CNF nanocomposite, was attributed to the occurrence of massive crazing effect as a result of the presence of CNF and its effect on the crystallinity and/or on the spherulite growth. Finally, 6 kg of plasticized PLA nanocomposite with 5 wt% of ChNC was prepared and used as a masterbatch to produce bio-nanocomposite blown films. The nanocomposite material showed easier processability during the film-blowing process when compared with the reference material without nanocrystals. In addition, the nanocomposite blown films exhibited higher tear and puncture strength, lower fungal activity and lower electrostatic attraction properties, which are favorable in packaging applications. In conclusion, this thesis shows that the liquid-assisted extrusion process is an excellent approach for producing PLA nanocomposites using cellulose and chitin nanomaterials. The results indicated that the addition of these nanomaterials, together with a plasticizer and further processing, can result in PLA nanocomposites with varied properties that can be used for packing applications. It was also shown that the processing technique presented can be a step forward for the large-scale production of bionanocomposites. 
  •  
3.
  • Lander, Sanna, 1990- (författare)
  • Sulfonated Cellulose Membranes for Energy Storage Applications
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the ongoing efforts to reduce the dependency of mankind on fossil fuels for the supply of energy, renewable energy sources such as solar cells and wind turbines are employed to an increasing extent. Transitioning a large portion of electrical grids to intermittent power sources come with several problems that need to be taken into account and handled, such as ensuring supply at peak power demand and considering frequency regulation and other issues related to the stability of the grid. One possible way to increase the amount of intermittent energy sources while maintaining a stable grid and power supply is to use large scale energy storage systems to store energy that can then be used as needed.One of the most promising energy storage systems for this purpose is the redox flow battery, an electrochemical energy storage system in which the power output and total energy storage capacity are decoupled, the former relating to the area of the electrochemical cell and the latter to the amount of electrolyte. This decoupling is a great advantage since large electrolyte tanks can be used to store huge amounts of energy in a stationary manner.Redox flow batteries and other devices such as fuel cells and certain types of batteries are dependent on a selective membrane for their function. The membrane needs to efficiently transport certain species while blocking others, and the function of the membrane is often greatly influencing the performance of the devices that employ them. Current state-of-the-art ion selective membranes are often produced from PFSA-based materials, which are problematic in terms of sustainability and cost. Finding ways to replace such membranes with equally functional components produced from bio-based materials would be a large step forward in terms of improving the sustainability and cost-efficiency of large scale electrochemical energy storage.In this work, functionalized cellulose nanofibrils are used as starting material to produce novel bio-based selective membranes aimed to be employed in electrochemical energy storage systems, in particular redox flow batteries. The possibility to precisely tune the properties of membranes via the degree of modification of the starting material is investigated, as well as some strategies to further improve the performance of membranes via additives and post-fabrication modifications.
  •  
4.
  • Munier, Pierre, 1993- (författare)
  • Assembly and alignment in cellulose nanomaterial-based composite dispersions and thermally insulating foams
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Research on nanoparticles extracted from renewable and highly available sources is motivated by both the development of functional nanomaterials and the drive to replace widely used materials based on fossil resources. In particular, cellulose, in the form of cellulose nanomaterials (CNM), has attracted increased attention for the development of sustainable and high performance products, thanks to properties that include high specific mechanical strength, chemical versatility and anisotropic thermal conductivity. Ice-templated CNM foams display super-insulating properties across the direction of the aligned particles (radially) and could potentially compete with fossil-based insulation materials. This thesis investigates the alignment and co-assembly of widely available inorganic nanomaterials with CNM in aqueous dispersions, and the relative importance of phonon scattering in anisotropic thermally insulating composite foams.Time resolved small-angle X-ray scattering (SAXS) experiments have been conducted to study assembly and alignment in composite aqueous dispersions containing cellulose nanocrystals (CNC) and montmorillonite (MNT) clay nanoplatelets. The co-assembly of CNC and MNT in slowly evaporating levitating droplets was dominated by the interactions between the dispersed CNC particles but MNT promoted gelation and assembly at lower total volume fractions than in CNC-only droplets. Combining SAXS with rotational rheology showed that shear induced a high degree of orientation of CNC in both the CNC-only and mixed CNC:MNT dispersions. The shear-induced CNC orientation relaxed quickly in the CNC-only dispersion but relaxation was strongly retarded and partially inhibited in the mixed CNC:MNT dispersions.Analysis of previous works suggests that anisotropic and multiscale CNM-based foams with a high number of interfaces can favour heat dissipation by phonon scattering within the foam walls. Measurements and theoretical estimates of the thermal conductivities of CNC-only ice-templated foams over a wide range of densities confirmed the importance of phonon scattering to achieve super-insulating radial thermal conductivity values. Ice-templated CNC:MNT composite foams displayed a lower radial thermal conductivity compared to CNC-only foams, which suggests that the introduction of heterogeneous interfaces between the biopolymer and the clay enhanced the dissipation of heat through phonon scattering. Composite ice-templated foams of colloidal silica and TEMPO-oxidised cellulose nanofibrils (TCNF) were significantly stronger under mechanical compression and less sensitive to moisture uptake than TCNF-only foams, and maintained radial thermal conductivities that are comparable with widely used thermally insulating materials. These examples could pave the way towards the development of super-insulating, strong and moisture-resilient CNM-based composite foams.
  •  
5.
  • Zhu, Chuantao, 1984- (författare)
  • Nanocellulose and Its Biohybrids for Water Purification : Atomic Force Microscopy as a Tool to Probe Surface Properties and Interactions
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanocellulose has been explored extensively in recent years as an adsorbent due to its promising performance in the removal of charged contaminants from water. In this thesis, various atomic force microscopy (AFM) techniques are used to understand the surface characteristics and specific interactions of nanocellulose with water contaminants (heavy metal ions and dyes) and nanoscale entities (Graphene Oxide (GO) and Graphene Oxide nanocolloids (nanoGO)), and explain the mechanisms related to adsorption, metal ion clustering, self-assembly and mechanical reinforcement.AFM probes functionalised with microscale and nanoscale celluloses were used as colloidal probes to study specific surface interactions with heavy metal ions and dyes in the aqueous medium. This approach enabled quantitative measurements of the adhesion force between nanocellulose and the water pollutants under in situ conditions by direct or in-direct methods. Adhesion forces, including the piconewton range, were measured, and the forces depended on the surface groups present on the nanocellulose.AFM imaging in dry and/or wet conditions was successfully used to investigate the adsorption, self-assembly, morphology and mechanical properties of nanocellulose and its bio-hybrids. The self-assembly, the metal nanolayer and the nanoclusters on the surface of nanocellulose and its biohybrids after adsorption were confirmed and explained by advanced microscopy, spectroscopy and computational modelling.The adhesion and stiffness measurement of single nanocellulose fibers using in situ PeakForce Quantitative Nanomechanical (PF-QNM) characterization confirmed the adsorption of metal ions on the surface in the liquid medium. PF-QNM mapping of the freestanding biohybrid membranes also revealed the enhanced modulus of the biohybrid membrane compared with the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxylradical)-mediated oxidation nanofibers (TOCNF) membrane, which explained the hydrolytic stability and recyclability of these membranes.The established methodology, which combines advanced microscopy with spectroscopy and modelling techniques, can be extended to other biobased macromolecular systems to investigate the adsorption behaviour and/or surface interactions in bio nanotechnology.
  •  
6.
  • Aguilar Sánchez, Andrea, 1987- (författare)
  • Nanopolysaccharide coatings for functional surfaces in water-treatment materials : From mechanisms to process scalability
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, materials from renewable resources were used to develop functionalized surfaces for water treatment. The work is thus inspired by, and contributes to, the United Nations sustainable goals of: (i) clean water and sanitation, (ii) climate action, (iii) responsible consumption and production, (iv) life below water, and (v) partnerships for the goals.Nanopolysaccharides, most specifically nanocellulose and nanochitin, are great candidates for functional and renewable materials for multiple applications, including the treatment of water and wastewater. This thesis focused on the formulation of different types of nanopolysaccharide-based coatings to enhance the performance of commercially available membranes and cellulose fabrics. We developed a simple waterborne layer-by-layer cellulose nanocrystals (CNC) and TEMPO-oxidized cellulose nanofibrils (T-CNF) coating for commercially available membranes. By changing the surface and pore structure of the membrane, the coating tuned which substrates could pass through the membrane, improved antifouling performanced, and when derived from T-CNF, it was harmful to bacterial colonization. Considering the observed T-CNF’s effect on bacteria, we developed a chemically crosslinked T-CNF/Poly(vinyl) alcohol (PVA) coating with outstanding antibiofouling performance, ion adsorption/rejection combined with size exclusion, and with dimensional and pH stability. Furthermore, we used a surface-impregnation approach based on bio-based nanotechnology which resulted in highly efficient, with improved mechanical properties, and fully bio-based high-flux water filtration membranes using commercially available nonwoven fabrics. Membranes with coatings prepared from CNC, chitin nanocrystals (ChNC) and T-CNF separated particles in the size range of bacteria and viruses, and those prepared from also T-CNF showed high microplastic filtration efficiency. Moreover, membrane coating based on ChNC and T-CNF had outstanding antibacterial properties.Overall, we demonstrated that nanopolysaccharide coatings on membranes could provide a significant reduction in organic fouling and biofilm formation while enabling the adsorption of ions and separation of microplastics. In the case of biofilm formation, the functional group and surface charge of the different nanopolysaccharides determined the effect over bacteria, indicating that surfaces could be tailored against microbes. In addition, we directly compared the effect of the different nanopolysaccharides of interest (CNC, T-CNF, ligno-celullose nanocrystals (L-CNC), and ChNC) on bacterial viability and biofilm formation, and found a great difference between the different types of nanocellulose and a different mechanism for nanochitin. Thorough, none of the nanopolysaccharides displayed cytotoxic effects while in indirect contact with the bacterial cells. Nevertheless, T-CNF, ChNC and L-CNC showed a cytostatic effect on bacterial proliferation. Furthermore, the nanomechanical properties of the bacterial cells and interacting forces between the nanopolysaccharides and Escherichia coli (E. coli) were affected when in direct contact with the nanopolysaccharide surfaces.Lastly, we upscaled one of our coating processes, demonstrating that the method could be easily implemented at an industrial level. The impact of this thesis relies on the effectiveness of the coatings, the different types of functionalities observed, the demonstrated fast implementation at an industrial scale, and the potential to extrapolate this technology to other applications.
  •  
7.
  • Georgouvelas, Dimitrios, 1985- (författare)
  • Modified and hybrid cellulose-based materials for water purification
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The need for clean water has led to the development of several different water treatment methods as well as to a large number of organic, inorganic, hybrid and/or composite materials that are used in these methods. Cellulose, being a highly abundant biopolymer with meritorious properties, such as high mechanical strength, tunable surface chemistry, high aspect ratio and surface area, to mention a few, is exploited in the current thesis for water treatment applications. Cellulose and its nanoscaled derivatives (i.e. cellulose nanocrystals and cellulose nanofibers) are modified or hybridized to achieve multiple functionalities.Cellulose and lignocellulose nanocrystals were successfully prepared by mechanical treatment from the residue of bioethanol production and were decorated with zwitterionic polymer grafts through controlled radical polymerization reactions. The presence of residual lignin and polymer grafts was investigated which showed that especially the polymer grafting can significantly improve the antibacterial and antifouling performance of nanocellulose.Functional cellulose-based membranes were prepared in a one-step water-based process. The membranes were evaluated as adsorbents for the removal of dyes and metal ions as well as metal-free catalysts for the decolorization of dyes Methylene Blue (MB) and Rhodamine B (RhB). The membranes exhibited maximum adsorption capacity of 78.6 mg/g for Co2+, up to 100 % of MB removal efficiency and up to 3-fold increase in the decolorization of MB.Both in-situ and ex-situ growth of ZIF-8 crystals was performed on the surface of cellulose and nanocellulose and cellulose/ZIF hybrid membranes were manufactured. The adsorption capacity of the membranes was tested with Cd2+, Cu2+, Fe3+, and Pb2+, exhibiting a maximum adsorption capacity of 354 mg/g for Cu2+. Furthermore, the membranes showed potential for use as self-standing electrode for the detection of Pb2+.Processing of cellulose/alginate composite hydrogels in the form of highly porous beads was successful. The surface of the beads was modified via in-situ TEMPO oxidation for the introduction of carboxyl groups. Adsorption of cationic contaminants as dyes and metal ions (MB and Cd2+ were used as models, respectively) was enhanced with in-situ modification. Removal of metal ions from the mining industry wastewater using modified cellulose/alginate hydrogel beads confirmed the potential of the adsorbent in complex water sources.All-cellulose flat sheets (100 × 20 cm) were produced via a water-based process using a Formette dynamic sheet former. The sheets exhibited excellent mechanical properties attributed to the alignment of the micro and nanofibers that this process offers. The adsorption performance of the sheets was evaluated both with Irgalite Blue RL and Irgalite Violet H dyes, which are highly used in paper and pulp industries as dyes models, and Fe3+, Mg2+, Cd2+, Co2+, Cr3+, and Mn2+ as metal ion models. A maximum removal efficiency of 83% for IB RL and maximum adsorption capacity of 737 mg/g for Mg2+.The work shows the potential of cellulose as a sustainable and scalable platform for the tailoring of multifunctional materials for water treatment with cationic pollutants removal, antifouling, antibacterial and sensing capabilities.
  •  
8.
  • Henschen, Jonatan, 1989- (författare)
  • Bacterial adhesion to polyelectrolyte modified materials based on nanocellulose
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Since the introduction of materials based on cellulose nanofibrils (CNFs), these materials have been studied extensively and are suggested to be suitable for use in, for example, hygiene and health care products. A property not very well studied but that could further increase the usability of CNF products is the possibility of controlling bacterial adhesion to the materials. Controlling and fine-tuning the bacterial adhesion makes it possible to produce contact-active antibacterial materials as well as anti-adhesive materials.The current thesis shows how the number of bacteria adhering to CNF-based materials can be altered through the adsorption of polyelectrolyte multilayers. Polyvinylamine (PVAm) and polyacrylic acid (PAA) were adsorbed in multilayers to achieve differently charged materials. The CNF substrates consisted of both crosslinked and non-crosslinked films with different surface charges and structures as well as porous aerogels.The results show the possibility of adsorbing PVAm/PAA to recharge the surfaces and construct multilayers. The polyelectrolyte adsorption was affected both by crosslinking and by changing the surface charge of the CNF films. Increasing the surface charge resulted in a decreased PVAm adsorption after the first polymer layer. Crosslinking the films resulted in a low initial PVAm adsorption, but as more layers were adsorbed, the PVAm adsorption increased similarly to the non-crosslinked films. The PVAm adsorption to the aerogels was lower than expected, taking into account their high surface area and surface charge, possibly due to crowding effects on the surface due to geometric limitations.Only the CNF films with the lowest surface charge and the aerogels adsorbed high numbers of bacteria from bacterial suspensions. The bacterial adsorption to the films was affected by the surface charge, the PAA adsorption and the PVAm adsorption, with a higher net surface charge leading to higher bacterial adsorption. The aerogels efficiently removed bacteria from the bacterial suspensions by adsorbing them onto their surface, with some samples removing over 99.9 % of the bacteria. The results presented in this thesis are believed to lead to a better understanding of both polyelectrolyte adsorption on CNF materials and bacterial adhesion to CNF materials and how polyelectrolyte multilayer adsorption can alter it.
  •  
9.
  • Hoogendoorn, Billy W. (författare)
  • Exploring cellulose as a biomacromolecule for enhanced battery metal ion recovery/recycling
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The research focused on the effects of integrating nanocellulose in the solidification of metal ions into metal oxide particles or metallic electrodeposits.  Firstly, the cellulose was isolated as highly crystalline ca. 15-25 nm thick and 500 nm long fibers from bacterial cellulose using acid hydrolysis and had a negative surface charge. Positively charged nanocellulose was also explored using cationic functional groups substituted onto the nanofiber surface.  The effect of the isolated nanocellulose when preparing metal oxides via enforced precipitation of zinc metal ions into zinc oxide particles was investigated at ultra-low nanocellulose content ≤0.01 %. The result indicated that increased reaction yields of ~15 % and a reduction of particle sizes by up to 50 % could occur at nanocellulose concentrations of 0.01 %. The kinetics was studied and showed that the presence of cellulose consistently increased the consumption rates of zinc ions. If the reaction consumed a large fraction of the zinc-ions (>80%) within the first 15 min, continued growth of ZnO was also suppressed by the presence of nanocellulose. This was observed during the synthesis of sheet-like ZnO-particles, where an increase in reaction yield from 81 to 95 % hindered the growth of additional nanorods, which otherwise had formed after 15 min of the reaction. Further, nanocellulose was then evaluated for metal recovery reactions of Zn, Cd, and Ni using electrodeposition. Zinc and cadmium, which generally form separate, faceted metal particles during electrodeposition, grew large dendrites when nanocellulose was present in the electrolyte. In the case of cadmium, the formation of dendrites was correlated with increases in yield by up to 15 %. For nickel, which always deposited as uniform and non-faceted layers, the presence of nanocellulose did not result in dendritic deposits. While the presence of 0.05 % of nanocellulose did not affect the yield for negatively charged nanocellulose, positively charged nanocellulose decreased the deposited amount by up to ca. 20 %. The temperature was also used to tune the dendritic formation during the zinc deposition. The major finding was that while the zinc electrodeposition in the presence of nanocellulose at 20 or 40°C induced dendritic growth, a similar deposition at 60 °C did not, reverting the deposition towards promoting dense and faceted zinc particles. The research on integrating nanocellulose in metal oxide particle solidification and metal recovery using electrodeposition aligns with the United Nations' Sustainable Development Goals (SDGs), particularly Goal 12: Responsible Consumption and Production, and Goal 1: End poverty in all its forms everywhere, but also Goal 13: Climate Action. The use of nanocellulose as an additive can contribute to sustainable consumption and production practices, reducing waste and conserving natural resources. This approach can help to address the challenge of meeting growing demands for metals used in various industrial applications, particularly those associated with battery manufacturing. Recycling valuable metals using nanocellulose can reduce the environmental impact of mining and processing ores, contributing to sustainable resource management and contribute to poverty reduction for creating job opportunities. Furthermore, the use of nanocellulose in electrodeposition reactions will help to combat climate change by promoting more efficient and environmentally friendly metal recovery methods, potentially reducing the carbon footprint associated with traditional metal recovery and mitigate the environmental impacts of metal extraction and mining. Overall, the research on integrating nanocellulose in metal oxide particle solidification and metal recovery using electrodeposition demonstrates innovative and sustainable solutions for resource management, contributing to the UN's SDGs.
  •  
10.
  • Mianehrow, Hanieh (författare)
  • Two-dimensional Nanocomposites Based on Cellulose Nanofibrils and Graphene Oxide
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Two-dimensional (2D) nanocomposites based on cellulose nanofibrils (CNF) and 2D nanomaterials are of interest as sustainable materials combining functional and structural properties. To achieve reinforcement effects from 2D nanomaterials, their orientation and dispersion state in the CNF matrix are important. In this thesis, nanocomposites based on CNF and graphene oxide (GO) platelets are investigated. The focus is on understanding nanostructure-property relationships, reinforcement mechanisms and interfacial molecular interactions. For this purpose, experimental investigations are combined with molecular dynamics (MD) simulations. CNF-GO nanocomposite nanopapers with different GO content are prepared using vacuum filtration of stable hydrocolloid dispersions, followed by drying. Nanostructure and physical and mechanical properties are investigated. Even a small, “homeopathic” amount of large aspect ratio GO platelets (0.07 vol%) is shown to induce ordering in the CNF matrix resulting in strong property improvement. In order to add an additional functionality to such nanocomposites, the GO in CNF-GO wet cake (after vacuum filtration) is chemically reduced to reduced graphene oxide (RGO). The main idea is to preserve the homogeneous distribution of GO in the CNF matrix and then reduce GO to RGO to achieve electrical conductivity together with mechanical reinforcement. The mechanical properties are very high. Effects from moisture on the mechanical performance of CNF-RGO nanocomposite are also studied and compared to CNF-GO and neat CNF films. Although CNF-GO adsorbs more moisture, it shows higher tensile strength at 90% relative humidity (RH) compared to CNF-RGO and neat CNF. Moisture effects on molecular interactions at CNF-GO interface were further studied by MD simulations. Dry interfaces are formed even in water-soaked conditions. The reason is that the system gains entropy as trapped interfacial water diffuses to form bulk water. The CNF-GO interface shows higher interfacial shear strength than CNF-graphene or RGO, because of higher hydrogen bond density. This may contribute to the higher strength for CNF-GO compared with CNF-RGO, despite higher moisture content for CNF-GO at 90% RH.
  •  
11.
  • Saadattalab, Vahid, 1991- (författare)
  • From blue hydrochars to activated carbons : Hydrothermal carbonization, chemical activation and gas adsorption
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hydrothermal carbonization (HTC) of carbohydrates and biomass is a straightforward method for preparing hydrochars at low temperatures of 180-250 °C. Hydrochars are more carbonized than their precursors. Increasing the carbonization degree of hydrochars at hydrothermal temperatures is a scientific quest that is addressed in this thesis. Hydrochars are known to have a spherical or irregular morphology. Here we address thin film hydrochars for the first time.  Hydrochars themselves are carbon precursors for preparing activated carbons. Activated carbons are porous materials that can be used for gas adsorption applications. In this thesis, enhanced adsorption of VOCs at low pressures is addressed by using iron phosphate impregnated activated carbons. Finaly, any chemical process or product including those in this thesis such as HTC, activation, hydrochar and activated carbons may contribute to the issue of environmental degradation positively or negatively. Such environmental impacts are addressed by life cycle assessment of processes of HTC and activation and their related products in the last paper of this thesis. Briefly mentioned, in my first study (Paper I), I focused on the HTC of glucose in the presence of iron (II) sulfate. By changing the concentration of iron (II) sulfate, with a catalytic amount, blue hydrochars were formed at the bottom of the autoclave. The blueness was related to thin film interference. The thin film hydrochars were more carbonized than spherical hydrochars and the yield of HTC has increased in the presence of iron (II) sulfate. The second study (Paper II) is focused on the activation of hydrochars with H3PO4 and H3PO4+FeCl3. We showed that ultramicroporosity and impregnated iron phosphate species enhance the adsorption of VOCs at low pressure. The ACs were impregnated with Fe (PO3)2 and it was shown that Fe (PO3)2 acts as an activation agent which opens up for future studies. In the third study (Paper III), H3PO4-activated carbons were prepared and modified with FeS and FeSe and it was shown that the ACs were also impregnated with Fe2P, in the case of AC-FeS/Fe2P. FeSe and FeS were not detected by XRD. Only large crystals of Fe2P were detected in the sample AC-FeS/Fe2P. In the last study (Paper IV), prickly pear seed biomass from the agro sector in Tunisia was hydrothermally carbonized. The hydrochars were then activated into ACs by CO2 activation. The life cycle assessment of the HTC and activation process was investigated.  
  •  
12.
  • Sultan, Sahar, 1987- (författare)
  • Nanocellulose based 3D printed hydrogel scaffolds for cartilage and bone regeneration : Tuning of composition, pore structure and functions
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biobased-materials with customized scaffolds have played a prominent role in the success of tissue engineering (TE). Cellulose nanomaterials (CNM) isolated from the abundant biopolymer, cellulose, is explored in this thesis for TE engineering due to its versatile properties such as biocompatibility, high specific strength, surface functionality and water retention capacity. Hydrogel formation capability of CNM at low concentrations (1–2 wt%) and shear thinning behavior has facilitated its use in 3-dimensional (3D) printing as a fabrication technique for 2-dimensional (2D) and 3D scaffolds. This technique offers 3D scaffolds with tailored, controlled and complex geometries having precise micro and macro scaled structures. The current work focuses on CNM-based 3D printed hydrogel scaffolds with tuned composition and pore structure for cartilage and bone regeneration. Design of CNM hydrogel formulations with suitable rheological properties, hydrogel inks capable of ex-situ crosslinking, print resolution during printing due to swelling and mechanical and dimensional stability of the printed scaffolds in moist environment are key challenges that were addressed.Inspired by the hierarchical and gradient nature of natural tissues 3D printed hydrogel scaffolds with gradient pore structure and composition are reported for the first time with focus on cellulose nanocrystals (CNC) and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized cellulose nanofibers (TOCNF) based hydrogel ink printing for advanced and functional scaffolds.CNC-based hydrogel ink was used to 3D print uniform and gradient porous cubic scaffolds for cartilage regeneration. This work highlighted the importance of nozzle movement to obtain high resolution scaffolds with higher z-axis. The anisotropic rigid CNC aligned themselves along the printing direction due to the shear induced orientation that was quantified between 61–76%. To obtain adequate mechanical properties (0.20–0.45 MPa) suitable for cartilage regeneration, the hydrogel ink solid content was increased almost two-fold (5.4 wt% to 9.9 wt%) while exhibiting and mimicking the viscoelasticity of natural cartilage tissues. To improve the bioactivity of the CNC-based 3D printed scaffolds, a surface treatment through dopamine coating was performed. This coating enhanced the hydrophilicity and capability of 3D printed scaffolds to bind bioactive molecules such as fibroblast growth factor (FGF-18) for soft TE scaffolds.Surface functionality of TOCNF was utilized to fabricate functional hybrid scaffolds (CelloZIF-8) through one-pot in- situ synthesis of Metal-Organic frameworks (MOFs) with varied ZIF-8 loadings (30.8–70.7%). The inherent porosity of the ZIF-8 was used for loading and stimuli-responsive (pH-dependent) releasing of drug molecule such as curcumin. The developed CelloMOF system was extended to other MOFs (MIL-100) and drugs (methylene blue). The shear thinning property of TOCNF was reserved after MOFs hybridization and was used to 3D print porous scaffolds with excellent shape fidelity. In Cello-Apatite, TOCNF was also used as template for in-situ synthesis of hydroxyapatite (HAP) where the HAP loading was 67 wt% to mimic the bone composition. In an attempt to address both cartilage and bone regeneration, a biphasic osteochondral 3D printed hydrogel scaffold has been introduced with tuned composition, pore structure and mechanical properties.The work presents a sustainable, cost effective and scalable approach for TE using biobased and toxic free water-based formulations using low temperature processes that are extendable to other biomaterials as well as to other applications, such as water treatment.
  •  
13.
  • Valencia, Luis, 1990- (författare)
  • Cellulose Nanofibril-based Hybrid Materials : Eco-friendly design towards separation and packaging applications
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanocellulose has been lately considered as the “Holy-Grail” in the design of sustainable materials due to its bio-origin and an unprecedented combination of prominent features, including good mechanical properties, anisotropy and versatile surface chemistry. In addition, nanocellulose in the form of cellulose nanofibrils, can adopt variable structures and morphologies depending on the processing technique, such as aerogels, films and monoliths.However, there are limitations that hinder the implementation of cellulose nanofibrils in “real-life applications”, such as inherent interaction with bacteria and proteins, thus leading to surface-fouling; and loss of integrity due to water-induced swelling. A way to overcome these challenges, and provide further functionality, is through hybridization strategies, at which the multiple components act synergistically towards specific properties and applications. In this thesis, the aim is to present multiple strategies for the synthesis of novel cellulose nanofibril-based hybrid materials, in the form of 2D-films and 3D-foams, towards their employment for separation applications or active food packaging.A novel strategy to surface-functionalize cellulose nanofibril-membranes is proposed via grafting zwitterionic polymer brushes of poly (cysteine methacrylate). The modification can suppress the absorption of proteins in an 85%, as well as decreasing the adhesion of bacteria in an 87%, while introducing antimicrobial properties, as demonstrated against S. aureus.The spontaneous formation of functional metal oxide nanoparticles occurring in situ on cellulose nanofibrils-films during the adsorption of metal ions from water is investigated, which occurs without the additional use of chemicals or temperature. Notably, this process not only enables the upcycling of materials through multi-stage applications, but also provides a cost-effective method to prepare multifunctional hybrid materials with enhanced dye-removal/antimicrobial activity.The processing of functional composite films from cellulose nanofibril-stabilized Pickering emulsions and their suitability to be used as active edible barriers was demonstrated. The presence of oil in the films fine-tuned the properties of the films, as well as acted as the medium to encapsulate bio-active hydrophobic compounds, providing further functionality such as antioxidant and antimicrobial properties.Anisotropic porous hybrid foams with ultra-high loading capacity of sorbents (e.g., zeolites and metal-organic frameworks) were produced via unidirectional freeze-casting method using cellulose nanofibrils/gelatin as template material. The foams indeed exhibited ultra-high loading capacity of sorbent nanomaterials, a linear relationship between sorbent content and CO2 adsorption capacity, and high CO2/N2 selectivity.
  •  
14.
  • Eskilson, Olof, 1992- (författare)
  • Multifunctional Nanocellulose Composite Materials
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanoparticles (NPs) are particles with more than one dimension between 1 and 100 nm. Because of their small size, they typically display different physical and chemical properties than the corresponding bulk materials. NPs have been used in many different applications, such as in electronics, optics, catalysis, and in biomedicine. Due to their colloidal nature, NPs are often immobilized on a solid substrate, such as glass or polymer-based materials, including biopolymers. Nanocellulose is a biopolymerbased nanomaterial that can be obtained from plants or bacterial biofilms. They can be processed into thin and highly hydrated films with high mechanical strength and can serve as a versatile substrate for NPs. Bacterial cellulose (BC) is also an interesting material for generating wound dressings. The combination of NPs and BC results in soft and flexible nanocomposites (BC-NPs) that can demonstrate novel properties and improve the functionality of wound dressings. BC-NP nanocomposites have previously been obtained by impregnating BC with the reactants needed for synthesis of the NPs and allowing the reaction to proceed in situ, inside and on the surface of the BC. This strategy limits the possibilities to control NP geometry and NP concentration and make synthesis of nanocomposites with more sophisticated compositions very challenging. In addition, the synthesis conditions used can potentially have negative effects on the properties of BC. The work presented in this thesis shows the possibility to produce well-defined, tunable BC-NP nanocomposites using self-assembly under very benign conditions that enable functionalization of BC with a wide range of different types of NPs. In addition to exploring the self-assembly process and the physical properties of these new BC-NP composites, several different applications were investigated. The functionalization of BC with gold nanoparticles (AuNPs) of different sizes and geometries was demonstrated. The resulting materials were used for development of a new sensor transduction technology, exploiting the optical response upon mechanical compression to detect biomolecules. BC-AuNP nanocomposites were also developed for monitoring of protease activity of wound pathogens, for catalysis, and for fabrication of ultra-black materials with unique absorption and scattering profiles of light in the visible and near infrared spectral range. In addition, the self-assembly process could be adopted for generating BC-mesoporous silica nanoparticles (MSNs) nanocomposite wound dressings. The resulting high surface area materials could be used as carriers for pH sensitive dyes. The pH-responsive BC-MSNs demonstrated adequate biocompatibility and allowed for monitoring of wound pH and for assessment of wound status. The strategies for functionalization of BC with inorganic NPs that was developed and explored in this thesis are highly versatile and allow for fabrication of a wide range of multifunctional nanocomposite materials. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
doktorsavhandling (13)
licentiatavhandling (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Mathew, Aji, Profess ... (7)
Mathew, Aji P., Prof ... (4)
Bergström, Lennart, ... (2)
Sultan, Sahar, 1987- (1)
Larsson, Josefin (1)
Larsson, Per (1)
visa fler...
Aguilar-Sánchez, And ... (1)
Mihranyan, Albert, P ... (1)
Crispin, Xavier, Pro ... (1)
Wågberg, Lars, Profe ... (1)
Aili, Daniel, 1977- (1)
Hedenqvist, Mikael S ... (1)
Fijoł, Natalia, 1994 ... (1)
Oksman, Kristiina, P ... (1)
Selegård, Robert, 19 ... (1)
Henschen, Jonatan, 1 ... (1)
Hoogendoorn, Billy W ... (1)
Hedin, Niklas, Profe ... (1)
Berglund, Lars, Prof ... (1)
Eskilson, Olof, 1992 ... (1)
Martinsson, Erik, 19 ... (1)
Ikkala, Olli, Profes ... (1)
Herrera Vargas, Nata ... (1)
Mathew, Aji P., Prof ... (1)
Bergström, Lennart, ... (1)
Bismarck, Alexander, ... (1)
Nyström, Gustav, Dr (1)
Georgouvelas, Dimitr ... (1)
Liimatainen, Henrikk ... (1)
Öberg, Sven, Profess ... (1)
Mathew, Aji (1)
Malkoch, Michael, As ... (1)
Vuorinen, Jyrki, Pro ... (1)
Olsson, Richard, Uni ... (1)
Li, Yuanyuan, Univer ... (1)
Lander, Sanna, 1990- (1)
Gueskine, Viktor, Ph ... (1)
Vagin, Mikhail, Asso ... (1)
Zhu, Chuantao, 1984- (1)
Mianehrow, Hanieh (1)
Munier, Pierre, 1993 ... (1)
Eichhorn, Steve, Pro ... (1)
Saadattalab, Vahid, ... (1)
Mathew, Aji, PhD (1)
Crispin, Reverant, P ... (1)
Valencia, Luis, 1990 ... (1)
Österberg, Monika, P ... (1)
visa färre...
Lärosäte
Stockholms universitet (8)
Kungliga Tekniska Högskolan (3)
Linköpings universitet (2)
Luleå tekniska universitet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy