SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Matsuo Taro) "

Search: WFRF:(Matsuo Taro)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Akiyama, Eiji, et al. (author)
  • SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK
  • 2016
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:6
  • Journal article (peer-reviewed)abstract
    • Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
  •  
2.
  • de Leon, Jerome, et al. (author)
  • NEAR-IR HIGH-RESOLUTION IMAGING POLARIMETRY OF THE SU Aur DISK : CLUES FOR TIDAL TAILS?
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 806:1
  • Journal article (peer-reviewed)abstract
    • We present new high-resolution (similar to 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (similar to 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of similar to 90 AU, an inclination of similar to 35 degrees from the plane of the sky, and an approximate PA of 15 degrees for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2.5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1. (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.
  •  
3.
  • Follette, Katherine B., et al. (author)
  • SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 798:2
  • Journal article (peer-reviewed)abstract
    • We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a similar to 60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 mu m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 +/- 1 and measure a low mass accretion rate of 10(-8.5) M-circle dot yr(-1), both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
  •  
4.
  • Hirao, Yuki, et al. (author)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
5.
  • Konishi, Mihoko, et al. (author)
  • A substellar companion to Pleiades HII 3441
  • 2016
  • In: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 68:6
  • Journal article (peer-reviewed)abstract
    • We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.'' 49 +/- 0.'' 02 (66 +/- 2 au) and a mass of 68 +/- 5 M-J based on three observations in the J-, H-, and K-s-bands. The spectral type is estimated to be M7 (similar to 2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0(-8.8)(+26.1)%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.
  •  
6.
  • Kooistra, Robin, et al. (author)
  • Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
  • Journal article (peer-reviewed)abstract
    • We present H-band (1.6 mu m) scattered light observations of the transitional disk RX J1615.3-3255, located in the similar to 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 mu m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with di ff erent dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
  •  
7.
  • Lomax, Jamie R., et al. (author)
  • CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 828:1
  • Journal article (peer-reviewed)abstract
    • We present a new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system's spectral energy distribution (SED) and H-band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur's SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur's spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.
  •  
8.
  • Mayama, Satoshi, et al. (author)
  • Subaru Near-infrared Imaging Polarimetry of Misaligned Disks around the SR 24 Hierarchical Triple System
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:1
  • Journal article (peer-reviewed)abstract
    • The SR 24 multistar system hosts both circumprimary and circumsecondary disks, which are strongly misaligned with each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in opposite directions. To investigate the nature of this unique twin disk system, we present 01 resolution near-infrared polarized intensity images of the circumstellar structures around SR 24, obtained with HiCIAO mounted on the Subaru 8.2 m telescope. Both the circumprimary disk and the circumsecondary disk are resolved and have elongated features. While the position angle of the major axis and radius of the near-IR (NIR) polarization disk around SR 24S are 55° and 137 au, respectively, those around SR 24N are 110° and 34 au, respectively. With regard to overall morphology, the circumprimary disk around SR 24S shows strong asymmetry, whereas the circumsecondary disk around SR 24N shows relatively strong symmetry. Our NIR observations confirm the previous claim that the circumprimary and circumsecondary disks are misaligned from each other. Both the circumprimary and circumsecondary disks show similar structures in 12CO observations in terms of its size and elongation direction. This consistency is because both NIR and 12CO are tracing surface layers of the flared disks. As the radius of the polarization disk around SR 24N is roughly consistent with the size of the outer Roche lobe, it is natural to interpret the polarization disk around SR 24N as a circumbinary disk surrounding the SR 24Nb–Nc system.
  •  
9.
  • Momose, Munetake, et al. (author)
  • Detailed structure of the outer disk around HD169142 with polarized light in H-band
  • 2015
  • In: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 67:5
  • Journal article (peer-reviewed)abstract
    • Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.2 <= r <= 1.2, or 29 <= r <= 174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r=29-52 AU and r=81.2-145 AU respectively show r(-3)-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r=40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r<50 AU) is derived to be >= 0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.
  •  
10.
  • Oh, Daehyeon, et al. (author)
  • A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 831:1
  • Journal article (peer-reviewed)abstract
    • We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 ''.07 and r similar to 0 ''.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 +/- 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M(Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk.
  •  
11.
  • Ohta, Yurina, et al. (author)
  • Extreme asymmetry in the polarized disk of V1247 Orionis
  • 2016
  • In: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 68:4
  • Journal article (peer-reviewed)abstract
    • We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of similar to 0.'' 14-0.'' 86 (54-330 au) from the central star. The polarized intensity image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.'' 28 +/- 0.'' 09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at less than or similar to 46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.
  •  
12.
  • Rich, Evan A., et al. (author)
  • Multi-epoch Direct Imaging and Time-variable Scattered Light Morphology of the HD 163296 Protoplanetary Disk
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution Imaging Spectrograph (CHARTS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0 ''.65 (66 au) and extends out to 0 ''.98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a strong 2.7 x asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk feature. Assuming standard hot-start evolutionary models and a system age of 5 Myr, we set new, direct mass limits for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate along the major (minor) disk axis of of 1.5 (2) M-J.
  •  
13.
  • Rich, Evan A., et al. (author)
  • NEAR-IR POLARIZED SCATTERED LIGHT IMAGERY OF THE DoAr 28 TRANSITIONAL DISK
  • 2015
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 150:3
  • Journal article (peer-reviewed)abstract
    • We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10 (13 AU) out to 0.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 M-circle dot disk that has a partially depleted inner gap from the dust sublimation radius out to similar to 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.
  •  
14.
  • Rich, Evan A., et al. (author)
  • The fundamental stellar parameters of FGK stars in the SEEDS survey Norman, OK 73071, USA
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 472:2, s. 1736-1752
  • Journal article (peer-reviewed)abstract
    • Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from Echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and TemperatureGravity microtrubulentVelocity ITerations to calculate the fundamental parameters, we have computed T-eff, log(g), v(t), [Fe/H], chromospheric activity and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighbourhood. Additionally, we find the ages of most of our sample are < 500 Myr, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The futuremeta-analysis of the frequency ofwide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected comoving companions with the properties of their host stars.
  •  
15.
  • Ryu, Tsuguru, et al. (author)
  • HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL VELOCITY TRENDS
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 825:2
  • Journal article (peer-reviewed)abstract
    • A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to gamma Hya B (0.61(-0.14)(+0.12)M(circle dot)), HD 5608 B (0.10 +/- 0.01M(circle dot)), and HD 109272 B (0.28 +/- 0.06M(circle dot)). For the remaining targets (iota Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M-Jup at projected separations of 1 ''-7 ''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets iota Dra b, HD 5608 b, and HD 14067 b.
  •  
16.
  • Tinetti, G., et al. (author)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Journal article (peer-reviewed)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
17.
  • Yang, Yi, et al. (author)
  • High-contrast Polarimetry Observation of the T Tau Circumstellar Environment
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 861:2
  • Journal article (peer-reviewed)abstract
    • We conducted high-contrast polarimetry observations of T Tau in the H-band, using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics instrument mounted on the Subaru Telescope, revealing structures as near as 0 1 from the stars T Tau N and T Tau S. The whole T Tau system is found to be surrounded by nebulalike envelopes, and several outflow-related structures are detected in these envelopes. We analyzed the detailed polarization patterns of the circumstellar structures near each component of this triple young star system and determined constraints on the circumstellar disks and outflow structures. We suggest that the nearly face-on circumstellar disk of T Tau N is no larger than 0.''8, or 117 au, in the northwest, based on the existence of a hole in this direction, and no larger than 0.''27, or 40 au, in the south. A new structure, N5, extends to about 0.''42, or 59 au, southwest of the star, and is believed to be part of the disk. We suggest that T Tau S is surrounded by a highly inclined circumbinary disk with a radius of about 0.''3, or 44 au, with a position angle of about 30 degrees, that is misaligned with the orbit of the T Tau S binary. After analyzing the positions and polarization vector patterns of the outflow-related structures, we suggest that T Tau S should trigger the well-known E-W outflow, and is also likely to be responsible for a southwest precessing outflow coil and a possible south outflow.
  •  
18.
  • Yang, Yi, et al. (author)
  • High-resolution Near-infrared Polarimetry and Submillimeter Imaging of FS Tau A : Possible Streamers in Misaligned Circumbinary Disk System
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 889:2
  • Journal article (peer-reviewed)abstract
    • We analyzed the young (2.8 Myr-old) binary system FS Tau A using near-infrared (H-band) high -contrast polarimetry data from Subaru/HiCIAO and submillimeter CO (J = 2-1) line emission data from Atacama Large Millimeter/submillimeter Array (ALMA). Both the near-infrared and submillimeter observations reveal several clear structures extending to similar to 240 au from the stars. Based on these observations at different wavelengths, we report the following discoveries. One arm-like structure detected in the near-infrared band initially extends from the south of the binary with a subsequent turn to the northeast, corresponding to two bar-like structures detected in ALMA observations with an local standard of rest kinematic (LSRK) velocity of 1.19-5.64 km s(-1). Another feature detected in the near-infrared band extends initially from the north of the binary, relating to an arm-like structure detected in ALMA observations with an LSRK velocity of 8.17-16.43 km s(-1). From their shapes and velocities, we suggest that these structures can mostly be explained by two streamers that connect the outer circumbinary disk and the central binary components. These discoveries will be helpful for understanding the evolution of streamers and circumstellar disks in young binary systems.
  •  
19.
  • Yang, Yi, et al. (author)
  • NEAR-INFRARED IMAGING POLARIMETRY OF INNER REGION OF GG TAU A DISK
  • 2017
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:1
  • Journal article (peer-reviewed)abstract
    • By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the H band, with a spatial resolution of approximately 0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to < 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H-2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation. 100 au) young binary systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view