SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matthiessen Jens) "

Sökning: WFRF:(Matthiessen Jens)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tessin, Allyson, et al. (författare)
  • Arctic Continental Margin Sediments as Possible Fe and Mn Sources to Seawater as Sea Ice Retreats : Insights From the Eurasian Margin
  • 2020
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 34:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Continental margins are hot spots for iron (Fe) and manganese (Mn) cycling. In the Arctic Ocean, these depositional systems are experiencing rapid changes that could significantly impact biogeochemical cycling. In this study, we investigate whether continental margin sediments north of Svalbard represent a source or sink of Fe and Mn to the water column and how climate change might alter these biogeochemical cycles. Our results highlight that sediments on the Yermak Plateau and Sofia Basin exhibit accumulations of Fe and Mn phases compared to average shale. Conversely, sediments from the Barents Sea slope exhibit lower enrichments of Fe and Mn compared to average shale, with the exception of enriched, near‐surface sediment layers. Pore waters from these slope sites provide evidence for Fe and Mn reduction and diffusion of Fe and Mn into near surface sediments, which are susceptible to physical or biogeochemical remobilization. These regional patterns are best explained by the spatial distribution of sea ice coverage and labile organic carbon fluxes to the seafloor. As sea ice continues to retreat and the Yermak Plateau becomes seasonally ice‐free, productivity is expected to increase, which would increase the flux of carbon to the sediments, thereby increasing oxidant demand, and the reduction of Fe and Mn mineral phases. Our results suggest that as sea ice continues to retreat, the Yermak Plateau and other Arctic continental margins could become sources of Fe and Mn to Arctic bottom waters.
  •  
3.
  • Tessin, Allyson, et al. (författare)
  • Benthic phosphorus cycling within the Eurasian marginal sea ice zone
  • 2020
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 378:2181
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 mu molm(-2)yr(-1). On the Barents Sea slope, diffusive fluxes of P are much larger (1736-2449 mu molm(-2)yr(-1)), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
  •  
4.
  •  
5.
  • West, Gabriel, et al. (författare)
  • Amino acid racemization in Quaternary foraminifera from the Yermak Plateau, Arctic Ocean
  • 2019
  • Ingår i: Geochronology. - : Copernicus GmbH. - 2628-3719. ; 1:1, s. 53-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Amino acid racemization (AAR) geochronology is a powerful tool for dating Quaternary marine sediments across the globe, yet its application to Arctic Ocean sediments has been limited. Anomalous rates of AAR in foraminifera from the central Arctic were reported in previously published studies, indicating that either the rate of racemization is higher in this area, or inaccurate age models were used to constrain the sediment ages. This study investigates racemization rates in foraminifera from three well-dated sediment cores taken from the Yermak Plateau during the 2015 TRANSSIZ (TRansitions in the Arctic Seasonal Sea Ice Zone) expedition on RV Polarstern. D and L isomers of the amino acids aspartic acid (Asp) and glutamic acid (Glu) were separated in samples of the planktic foraminifer Neogloboquadrina pachyderma and the benthic species Cassidulina neoteretis to quantify the extent of racemization. In total, 241 subsamples were analysed, extending back to marine oxygen isotope stage (MIS) 7. Two previously published power functions, which relate the extent of racemization of Asp and Glu in foraminifera to sample age are revisited, and a comparison is made between the ages predicted by these calibrated age equations and independent geochronological constraints available for the cores. Our analyses reveal an excellent match between ages predicted by a global compilation of racemization rates for N. pachyderma and confirm that a proposed Arctic-specific calibration curve is not applicable at the Yermak Plateau. These results generally support the rates of AAR determined for other cold bottom water sites and further highlight the anomalous nature of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy