SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Matveyev Yu.) "

Search: WFRF:(Matveyev Yu.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schlueter, C., et al. (author)
  • The new dedicated HAXPES beamline P22 at PETRAIII
  • 2019
  • In: 13th International Conference on Synchrotron Radiation Instrumentation (SRI2018). - : American Institute of Physics (AIP). - 9780735417823
  • Conference paper (peer-reviewed)abstract
    • A new undulator beamline (P22) for hard X-ray photoelectron spectroscopy (HAXPES) was built at PETRA III (DESY, Hamburg) to meet the increasing demand for HAXPES-based techniques. It provides four special instruments for high-resolution studies of the electronic and chemical structure of functional nano-materials and catalytic interfaces, with a focus on measurements under operando and/or ambient conditions: (i) a versatile solid-state spectroscopy setup with optional wide-angle lens and in-situ electrical characterization, (ii) a HAXPEEM instrument for sub-µm spectro-microscopy applications, (iii) an ambient pressure system (> 1 bar) for operando studies of catalytic reactions and (iv) a time-of-flight spectrometer as a full-field k-microscope for measurements of the 4D spectral function ρ(EB,k). The X-ray optics were designed to deliver high brightness photon flux within the HAXPES energy range 2.4 – 15 keV. An LN2-cooled double-crystal monochromator with interchangeable pairs of Si(111) and (311) crystals is optionally combined with a double channel-cut post-monochromator to generate X-rays with variable energy bandpass adapted to the needs of the experiment. Additionally, the beam polarization can be varied using a diamond phase plate integrated into the beamline. Adaptive beam focusing is realized by Be compound refractive lenses and/or horizontally deflecting mirrors down to a spot size of ∼20x17 µm2 with a flux of up to 1.1x1013 ph/s (for Si(111) at 6 keV).
  •  
2.
  • Schönhense, G., et al. (author)
  • Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens
  • 2021
  • In: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 92:5
  • Journal article (peer-reviewed)abstract
    • The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for E-kin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 mu m above the sample surface for E-kin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at E-kin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm(2) (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm(2), it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at E-kin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view