SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mawet Dimitri) "

Sökning: WFRF:(Mawet Dimitri)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Absil, Olivier, et al. (författare)
  • An update on the VORTEX project
  • 2015
  • Ingår i: Techniques and Instrumentation for Detection of Exoplanets VII. - : SPIE.
  • Konferensbidrag (refereegranskat)abstract
    • In this talk, we will review the on-going activities within the VORTEX teamat the University of Liège and Uppsala University. The VORTEX project aimsto design, manufacture, test, and exploit vector vortex phase masks madeof sub-wavelength gratings (aka the Annular Groove Phase Mask, AGPM)for the direct detection and characterization of extrasolar planets. This talkwill specifically report on the commissioning of several AGPMs on infraredcameras equipping 10-m class telescopes, including the VLT, the LBT andthe Keck. We will describe the in-lab and on-sky performance of the AGPMs,and discuss first scientific observations. We will also report on the lessonslearned from the on-sky operation of our vortices, and discuss ways toimprove their performance. The potential of our coronagraphic devices inthe context of future extremely large telescopes and space missions will alsobe addressed.
  •  
2.
  •  
3.
  •  
4.
  • Absil, Olivier, et al. (författare)
  • The VORTEX project : first results and perspectives
  • 2014
  • Ingår i: Adaptive Optics Systems IV. - : SPIE. - 9780819496164
  • Konferensbidrag (refereegranskat)abstract
    • Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500: 1 in the L band, which translates into a raw contrast of about 6 x 10(-5) at 2 lambda/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0 : 1 0 0). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short-and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images.
  •  
5.
  • Absil, Oliver, et al. (författare)
  • Three years of harvest with the vector vortex coronagraph in the thermal infrared
  • 2016
  • Ingår i: Ground-Based and Airborne Instrumentation for Astronomy VI. - : SPIE - International Society for Optical Engineering. - 9781510601963 ; , s. 1-14
  • Konferensbidrag (refereegranskat)abstract
    • For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
  •  
6.
  • Boccaletti, Anthony, et al. (författare)
  • Fast-moving features in the debris disk around AU Microscopii
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7572, s. 230-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
  •  
7.
  •  
8.
  • Carlomagno, Brunella, et al. (författare)
  • Design and performance simulations of mid-IR AGPMs for ELT/METIS applications
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • The direct detection of exoplanets requires the use of dedicated, highcontrast imaging instruments. In this context, vector vortex coronagraphs(VVCs) are considered to be among the most promising solutions to reachhigh contrast at small angular separations. They feature a small innerworking angle (down to 0.9 lambda/D), high throughput, clear off-axis360° discovery space, and are simple to implement. The AGPM (AnnularGroove Phase Mask) is an implementation of the vortex phase mask, whichprovides achromaticity over an appreciable spectral range thanks to the useof sub-wavelength gratings. The grating profile can be optimized based onthe rigorous coupled wave analysis (RCWA) to achieve a quasi-achromaticphase shift up to a very broad band (L+M band: 3.5-5.1μm). These deviceshave been manufactured onto CVD diamond substrates, using reactiveion etching. In this communication, I will first present the latest RCWAConference 9605: Techniques and Instrumentationfor Detection of Exoplanets VIIR eturn to Contents +1 360 676 3290 · help@spie.org 631simulations performed in the L, M and N spectral bands, and for somecombinations of these bands. The resulting optimized AGPMs could beperfectly integrated in the E-ELT/METIS instrument, which aims at detectingand characterizing exoplanets by direct imaging. The target contrast forMETIS is <1e-4 at 2 lambda/D (~40 mas in L band), which translates into apeak rejection rate of few hundreds for the AGPMs. Secondly, the opticalpropagation within the METIS instrument will be studied to determine theperformances of a vortex coronagraph at the focus of METIS. In particular,the effect of the central obstruction, spiders, missing E-ELT segments,and pointing jitter will be analysed, together with the sensitivity to tip-tilt.Finally, the atmosphere and the AO contributions will be considered toobtain more realistic results.
  •  
9.
  • Carlomagno, Brunella, et al. (författare)
  • Mid-IR AGPMs for ELT applications
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • The mid-infrared region is well suited for exoplanet detection thanks to the reduced contrast between the planet and its host star with respect to the visible and near-infrared wavelength regimes. This contrast may be further improved with Vector Vortex Coronagraphs (VVCs), which allow us to cancel the starlight. One flavour of the VVC is the AGPM (Annular Groove Phase Mask), which adds the interesting properties of subwavelength gratings (achromaticity, robustness) to the already known properties of the VVC. In this paper, we present the optimized designs, as well as the expected performances of mid-IR AGPMs etched onto synthetic diamond substrates, which are considered for the E-ELT/METIS instrument.
  •  
10.
  • Carlomagno, Brunella, et al. (författare)
  • Performance evaluation of mid-IR vortex coronagraphs with centrally obscured segmented pupils
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • In its original design, the E-ELT/Metis instrument envisages a vortex coronagraph in the mid-IR regime for detection and characterization of exoplanets, with a contrast of 1e-4 at 2 lambda/D (~40 mas in L band). The AGPM (Annular Groove Phase Mask) is a vortex phase mask with impressive characteristics: small inner working angle, high throughput, achromaticity. A non-perfectly circular pupil and non-flat input wavefront result in a starlight leakage, degrading the performance of the vortex coronagraph. In this work, we present end-to-end performance simulations using Fourier optical propagation to determine the quality of the starlight rejection obtained with an infrared vortex coronagraph. We first analyse the performance facing E-ELT pupil variations (segmentations, central obscuration, spiders, missing segments), then pointing jitter and random adaptive optics residual phase screens are introduced to derive more realistic performance. Finally, more advanced concepts of the infrared vortex coronagraph are presented, in order to compensate for performance degradation.
  •  
11.
  • Castellá, Bruno Femenía, et al. (författare)
  • Commissioning and first light results of an L’-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument
  • 2016
  • Ingår i: Adaptive Optics Systems V. - : SPIE - International Society for Optical Engineering.
  • Konferensbidrag (refereegranskat)abstract
    • On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7 mu m. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.
  •  
12.
  •  
13.
  • Delacroix, Christian, et al. (författare)
  • A family of subwavelength grating vortexcoronagraphs (SGVCs) with higher topological charge
  • 2015
  • Ingår i: Techniques and Instrumentation for Detection of Exoplanets VII. - : SPIE.
  • Konferensbidrag (refereegranskat)abstract
    • The subwavelength grating vortex coronagraph (SGVC) is a focal-planespiral-like phase mask whose key benefit is to allow high contrast imaging atsmall angles. Directly etched onto a CVD diamond substrate, it is well suitedto perform in the mid-infrared domain. It provides a continuous helicalphase ramp with a dark singularity in its center, and is characterized by itsnumber of phase revolutions, called the topological charge. Over the pasttwo years, we have manufactured several charge-2 SGVCs (a.k.a. annulargroove phase masks) and successfully demonstrated their performanceson 10-m class telescopes (LBT, VLT/NaCo, VLT/VISIR). To prevent stellarleakage on future 30-m class telescopes (E-ELT, TMT, GMT), a broaderoff-axis extinction is required, which can be achieved by increasing thetopological charge. We have recently proposed an original design for acharge-4 SGVC allowing less starlight to leak through the coronagraph, atthe cost of a degraded inner working angle. In this talk, we report on ourlatest development of higher charge SGVCs. From 3D rigorous numericalsimulations using a finite-difference time-domain (FDTD) algorithm, weConference 9605: Techniques and Instrumentationfor Detection of Exoplanets VIIR eturn to Contents +1 360 676 3290 · help@spie.org 647have derived a family of coronagraphs with higher topological charge(SGVC4/6/8). Our new optimization method addresses the principallimitation of such space-variant polarization state manipulation, i.e., theinconvenient discontinuities in the discrete grating pattern. The resultinggratings offer improved precision to the phase modulation compared toprevious designs. Finally, we present our preliminary manufacturing andmetrology results for infrared components down to the K-band.
  •  
14.
  • Delacroix, Christian, et al. (författare)
  • Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings
  • 2012
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 51:24, s. 5897-5902
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present a solution for creating robust monolithic achromatic half-wave plates (HWPs) for the infrared, based on the form birefringence of subwavelength gratings (SWGs) made out of diamond. We use the rigorous coupled wave analysis to design the gratings. Our analysis shows that diamond, besides its outstanding physical and mechanical properties, is a suitable substrate to manufacture mid-infrared HWPs, thanks to its high refractive index, which allows etching SWGs with lower aspect ratio. Based on our optimized design, we manufactured a diamond HWP for the 11-13.2 mu m region, with an estimated mean retardance similar to 3.143 +/- 0.061 rad ( 180.08 +/- 3.51 degrees). In addition, an antireflective grating was etched on the backside of the wave plate, allowing a total transmittance between 89% and 95% over the band.
  •  
15.
  • Delacroix, Christian, et al. (författare)
  • Development of a subwavelength grating vortex coronagraph of topological charge 4 (SGVC4)
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • One possible solution to achieve high contrast direct imaging at a small inner working angle (IWA) is to use a vector vortex coronagraph (VVC), which provides a continuous helical phase ramp in the focal plane of the telescope with a phase singularity in its center. Such an optical vortex is characterized by its topological charge, i.e., the number of times the phase accumulates 2 pi radians along a closed path surrounding the singularity. Over the past few years, we have been developing a charge-2 VVC induced by rotationally symmetric subwavelength gratings (SGVC2), also known as the Annular Groove Phase Mask (AGPM). Since 2013, several SGVC2s (or AGPMs) were manufactured using synthetic diamond substrate, then validated on dedicated optical benches, and installed on 10-m class telescopes. Increasing the topological charge seems however mandatory for cancelling the light of bright stars which will be partially resolved by future Extremely Large Telescopes in the near-infrared. In this paper, we first detail our motivations for developing an SGVC4 (charge 4) dedicated to the near-infrared domain. The challenge lies in the design of the pattern which is unrealistic in the theoretically perfect case, due to state-of-the-art manufacturing limitations. Hence, we propose a new realistic design of SGVC4 with minimized discontinuities and optimized phase ramp, showing conclusive improvements over previous works in this field. A preliminary validation of our concept is given based on RCWA simulations, while full 3D finite-difference time-domain simulations (and eventually laboratory tests) will be required for a final validation.
  •  
16.
  •  
17.
  •  
18.
  • Delacroix, Christian, et al. (författare)
  • Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 553, s. A98-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Coronagraphy is a powerful technique to achieve high contrast imaging, hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared nowadays remain largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications.Aims. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of  ~16% (3.5–4.1 μm).Methods. Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench.Results. A broadband raw null depth of 2 × 10-3 was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 × 10-5 (10.5 mag) at 2λ/D. This result is fully in line with our projections based on rigorous coupled wave analysis modelling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated.Conclusions. After years of technological developments, mid-infrared vector vortex coronagraphs have finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Gonzalez, Carlos Alberto Gomez, et al. (författare)
  • VIP: Vortex Image Processing Package for High-contrast Direct Imaging
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 154:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source. position and flux estimation, and sensitivity curve. generation. Among the reference point-spread. function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github. com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.
  •  
23.
  • Hinkley, Sasha, et al. (författare)
  • The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1039
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
  •  
24.
  • Kaeufl, Hans Ulrich, et al. (författare)
  • NEAR : New Earths in the Alpha Cen Region (bringing VISIR as a "visiting instrument" to ESO-VLT-UT4)
  • 2018
  • Ingår i: Ground-Based And Airborne Instrumentation For Astronomy VII. - : SPIE. - 9781510619586
  • Konferensbidrag (refereegranskat)abstract
    • ESO in collaboration with the Breakthrough Initiatives, is adding a dedicated coronagraph to the Very Large Telescope mid-IR imager (VISIR) to further boost the high dynamic range imaging capability of this instrument. After the VISIR upgrade in 2012, where coronagraphic masks were first added to VISIR, it became evident that coronagraphy at a ground-based 8m-class telescope, even at wavelengths as long as 10 mu m, critically needs adaptive optics. For VISIR, a work-horse observatory facility instrument in normal operations, this is "easiest" achieved by bringing VISIR as a visiting instrument to the ESO-VLT-UT4 having an adaptive M2. This "visit" enables a meaningful search for Earth-like planets in the habitable zone around both alpha-Cen(1) and alpha-Cen(2). Meaningful here means, achieving a contrast of approximate to 10(-6) within approximate to 0.8 arcsec from the star. Various measures to improve the sensitivity of VISIR will be applied, especially a dedicated filter, faster chopping and a Strehl-ratio close to 100% thanks to extreme adaptive optics. This should allow to detect a planet twice the diameter of Earth in 50 h on source integration time. Key components will be a diffractive coronagraphic mask, the annular groove phase mask (AGPM), optimized for the most sensitive spectral band-pass in the N-band, complemented by a sophisticated apodizer at the level of the Lyot stop. For VISIR noise filtering based on fast chopping is required. A novel internal chopper system will be integrated into the cryostat. This chopper is based on the standard technique from early radio astronomy, conceived by the microwave pioneer Robert Dicke in 1946, which was instrumental for the discovery of the 3K microwave background. For risk mitigation all components are being tested and quali fi ed under realistic conditions in the lab at ESO headquarters before integration into the instrument. The performance or suppression of the coronagraph is so good, that a non-thermal source (vulgo a laser) is needed on the test-bench. We will give an overview of the optical changes to VISIR, the implementation of wave front sensing, the Dicke switch design and laboratory testing, the AGPM design and laboratory testing, non common path error control with a ZELDA mask, sensitivity and contrast estimates, data flow and analysis, the overall project status, plan and outlook Needless to say that this project is of critical interest for future infrared instrumentation at the next generation of extremely large telescopes aiming at surveying the solar neighborhood for terrestrial planets by detecting and characterizing them based on their mid-IR fluxes.
  •  
25.
  •  
26.
  •  
27.
  • Llop-Sayson, Jorge, et al. (författare)
  • Constraining the Orbit and Mass of epsilon Eridani b with Radial Velocities, Hipparcos IAD-Gaia DR2 Astrometry, and Multiepoch Vortex Coronagraphy Upper Limits
  • 2021
  • Ingår i: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 162:5
  • Tidskriftsartikel (refereegranskat)abstract
    • epsilon Eridani is a young planetary system hosting a complex multibelt debris disk and a confirmed Jupiter-like planet orbiting at 3.48 au from its host star. Its age and architecture are thus reminiscent of the early Solar System. The most recent study of Mawet et al., which combined radial-velocity data and Ms-band direct imaging upper limits, started to constrain the planet's orbital parameters and mass, but are still affected by large error bars and degeneracies. Here we make use of the most recent data compilation from three different techniques to further refine epsilon Eridani b's properties: RVs, absolute astrometry measurements from the Hipparcos and Gaia missions, and new Keck/NIRC2 Ms-band vortex coronagraph images. We combine this data in a Bayesian framework. We find a new mass, M-b = 0.66(-0.09)(+0.12) M-Jup, and inclination, i = 78.81(-22.41 degrees)(+29.34), with at least a factor 2 of improvement over previous uncertainties. We also report updated constraints on the longitude of the ascending node, the argument of the periastron, and the time of periastron passage. With these updated parameters, we can better predict the position of the planet at any past and future epoch, which can greatly help define the strategy and planning of future observations and with subsequent data analysis. In particular, these results can assist the search for a direct detection with JWST and the Nancy Grace Roman Space Telescope's coronagraph instrument.
  •  
28.
  •  
29.
  • Mawet, Dimitri, et al. (författare)
  • Characterization of the inner disk around HD 141569 A from KECK/NIRC2 L-band vortex coronagraphy
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:1, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L′ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W. M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ;23 au and up to ;70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L′ band to the H  band (Very Large Telescope/ SPHERE image)  to the visible (Hubble Space Telescope (HST)/ STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 ( at 406 and 245 au, respectively) . We fit our new L′ -band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
  •  
30.
  •  
31.
  •  
32.
  • Mawet, Dimitri, et al. (författare)
  • L '-band AGPM vector vortex coronagraph's first light on VLT/NACO Discovery of a late-type companion at two beamwidths from an F0V star
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. L13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High contrast imaging has thoroughly combed through the limited search space accessible with first-generation ground-based adaptive optics instruments and the Hubble Space Telescope. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. Aims. Our aim is to open a new search space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L' band. The L' band is a sweet spot for high contrast coronagraphy since the planet-to-star brightness ratio is favorable, while the Strehl ratio is naturally higher. Methods. An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L' band made from diamond subwavelength gratings was manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA, potentially being the key to unexplored discovery space. Results. Here we present the installation and successful on-sky tests of an L'-band AGPM coronagraph on NACO. Using angular differential imaging, which is well suited to the rotational symmetry of the AGPM, we demonstrated a Delta L' > 7.5 mag contrast from an IWA similar or equal to 0 ''.09 onwards, during average seeing conditions, and for total integration times of a few hundred seconds.
  •  
33.
  •  
34.
  •  
35.
  • Uyama, Taichi, et al. (författare)
  • Direct Imaging Explorations for Companions around Mid-Late M Stars from the Subaru/IRD Strategic Program
  • 2023
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 165:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Subaru telescope is currently performing a strategic program (SSP) using the high-precision near-infrared (NIR) spectrometer IRD to search for exoplanets around nearby mid/late M dwarfs via radial velocity (RV) monitoring. As part of the observing strategy for the exoplanet survey, signatures of massive companions such as RV trends are used to reduce the priority of those stars. However, this RV information remains useful for studying the stellar multiplicity of nearby M dwarfs. To search for companions around such "deprioritized" M dwarfs, we observed 14 IRD-SSP targets using Keck/NIRC2 with pyramid wave-front sensing at NIR wavelengths, leading to high sensitivity to substellar-mass companions within a few arcseconds. We detected two new companions (LSPM J1002+1459 B and LSPM J2204+1505 B) and two new candidates that are likely companions (LSPM J0825+6902 B and LSPM J1645+0444 B), as well as one known companion. Including two known companions resolved by the IRD fiber injection module camera, we detected seven (four new) companions at projected separations between ∼2 and 20 au in total. A comparison of the colors with the spectral library suggests that LSPM J2204+1505 B and LSPM J0825+6902 B are located at the boundary between late M and early L spectral types. Our deep high-contrast imaging for targets where no bright companions were resolved did not reveal any additional companion candidates. The NIRC2 detection limits could constrain potential substellar-mass companions (∼10–75 MJup) at 10 au or further. The failure with Keck/NIRC2 around the IRD-SSP stars having significant RV trends makes these objects promising targets for further RV monitoring or deeper imaging with the James Webb Space Telescope to search for smaller-mass companions below the NIRC2 detection limits.
  •  
36.
  • Vargas Catalan, Ernesto, et al. (författare)
  • Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595:A127, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims. We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods. Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results. The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100: 1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000: 1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10 5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions. Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT.
  •  
37.
  • Wagner, Kevin, et al. (författare)
  • Imaging low-mass planets within the habitable zone of α Centauri
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, alpha Centauri. Based on 75-80% of the best quality images from 100h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes. Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars.
  •  
38.
  • Wang, Jason J., et al. (författare)
  • Keck/NIRC2 L'-Band Imaging of Jovian-Mass Accreting Protoplanets around PDS 70
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present L'-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wave front sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semimajor axis of au and PDS 70 c to have a semimajor axis of au (95% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2–3 R Jup. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 M Jup and a mean mass accretion rate between 3 × 10−7 and 8 × 10−7 M Jup/yr. For PDS 70 c, we computed a mass between 1 and 3 M Jup and mean mass accretion rate between 1 × 10−7 and 5 × 10−7 M Jup/yr. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets' SEDs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy