SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mayatepek E) "

Sökning: WFRF:(Mayatepek E)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Chien, Yin-Hsiu, et al. (författare)
  • Mudd's disease (MAT I/III deficiency) : a survey of data for MAT1A homozygotes and compound heterozygotes
  • 2015
  • Ingår i: Orphanet Journal of Rare Diseases. - : Springer Science and Business Media LLC. - 1750-1172. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine beta-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 mu M or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management.
  •  
6.
  •  
7.
  •  
8.
  • Otonkoski, T, et al. (författare)
  • Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:1, s. 199-204
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified patients in whom strenuous physical exercise leads to hypoglycemia caused by inappropriate insulin release (exercise-induced hyperinsulinism [EIHI]). The aim of the present study was to test the hypothesis that the increased levels of lactate and/or pyruvate during anaerobic exercise would trigger the aberrant insulin secretion in these patients. A total of 12 patients (8 women and 4 men from two families) were diagnosed with EIHI, based on hypoglycemia and a more than threefold increase in plasma insulin induced by a 10-min bicycle exercise test. The mode of inheritance was autosomal dominant in these families. The acute response of insulin release to a bolus of intravenous pyruvate (13.9 mmol/1.73 m2) was studied in the patients and eight healthy control subjects. Insulin secretion did not respond to the pyruvate bolus in healthy control subjects. However, all EIHI patients responded to pyruvate, displaying a brisk increase in plasma insulin. The 1 + 3-min peak response was 5.6-fold in the patients and 0.9-fold in the control subjects (P < 0.001). To test the hypothesis that the pathogenesis of EIHI would involve monocarboxylate transport or metabolism in the β-cell, we sequenced the genes encoding the known monocarboxylate transporter proteins and tested the transport of pyruvate into patient fibroblasts. The results revealed normal coding sequences and pyruvate transport. In conclusion, EIHI represents a new autosomal-dominant hyperinsulinemia syndrome that may be more common than has been realized. The pyruvate test provides a simple, safe, and specific diagnostic test for this condition.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy