SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mazier F.) "

Sökning: WFRF:(Mazier F.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Serge, M. A., et al. (författare)
  • Testing the Effect of Relative Pollen Productivity on the REVEALS Model : A Validated Reconstruction of Europe-Wide Holocene Vegetation
  • 2023
  • Ingår i: Land. - : MDPI. - 2073-445X. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.
  •  
2.
  • Izdebski, A., et al. (författare)
  • Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic
  • 2022
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; :6, s. 297-306
  • Tidskriftsartikel (refereegranskat)abstract
    • The Black Death (1347–1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
  •  
3.
  • Trondman, Anna-Kari, et al. (författare)
  • Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:2, s. 676-697
  • Tidskriftsartikel (refereegranskat)abstract
    • We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
  •  
4.
  • Bragée, Petra, et al. (författare)
  • Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 12:2, s. 307-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Decadal-scale variations in total organic carbon (TOC) concentration in lake water since AD1200 in two small lakes in southern Sweden were reconstructed based on visible-near-infrared spectroscopy (VNIRS) of their recent sediment successions. In order to assess the impacts of local land-use changes, regional variations in sulfur, and nitrogen deposition and climate variations on the inferred changes in TOC concentration, the same sediment records were subjected to multi-proxy palaeolimnological analyses. Changes in lake-water pH were inferred from diatom analysis, whereas pollen-based land-use reconstructions (Landscape Reconstruction Algorithm) together with geochemical records provided information on catchment-scale environmental changes, and comparisons were made with available records of climate and population density. Our long-term reconstructions reveal that inferred lake-water TOC concentrations were generally high prior to AD1900, with additional variability coupled mainly to changes in forest cover and agricultural land-use intensity. The last century showed significant changes, and unusually low TOC concentrations were inferred at AD1930-1990, followed by a recent increase, largely consistent with monitoring data. Variations in sulfur emissions, with an increase in the early 1900s to a peak around AD1980 and a subsequent decrease, were identified as an important driver of these dynamics at both sites, while processes related to the introduction of modern forestry and recent increases in precipitation and temperature may have contributed, but the effects differed between the sites. The increase in lake-water TOC concentration from around AD1980 may therefore reflect a recovery process. Given that the effects of sulfur deposition now subside and that the recovery of lake-water TOC concentrations has reached pre-industrial levels, other forcing mechanisms related to land management and climate change may become the main drivers of TOC concentration changes in boreal lake waters in the future.
  •  
5.
  • Dearing, JA, et al. (författare)
  • Social-ecological systems in the Anthropocene : The need for integrating social and biophysical records at regional scales.
  • 2015
  • Ingår i: The Anthropocene Review. - : SAGE Publications. - 2053-0196 .- 2053-020X. ; 2:3, s. 220-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding social-ecological system dynamics is a major research priority for sustainable management of landscapes, ecosystems and resources. But the lack of multi-decadal records represents an important gap in information that hinders the development of the research agenda. Without improved information on the long-term and complex interactions between causal factors and responses, it will be difficult to answer key questions about trends, rates of change, tipping points, safe operating spaces and pre-impact conditions. Where available long-term monitored records are too short or lacking, palaeoenvironmental sciences may provide continuous multi-decadal records for an array of ecosystem states, processes and services. Combining these records with conventional sources of historical information from instrumental monitoring records, official statistics and enumerations, remote sensing, archival documents, cartography and archaeology produces an evolutionary framework for reconstructing integrated regional histories. We demonstrate the integrated approach with published case studies from Australia, China, Europe and North America.
  •  
6.
  • Fredh, Daniel, et al. (författare)
  • The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC-AD 2008
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10:5, s. 3159-3173
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the relationship between land-use and floristic diversity between 600 BC and AD 2008 in the uplands of southern Sweden. We use fossil pollen assemblages and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model to quantitatively reconstruct land cover at a regional scale. Floristic richness and evenness are estimated using palynological richness and REVEALS-based evenness, respectively. We focus on the period AD 350 to 750 to investigate the impact of an inferred, short-lived (< 200 yr) period of land-use expansion and subsequent land abandonment on vegetation composition and floristic diversity. The observed vegetation response is compared to that recorded during the transition from traditional to modern land-use management at the end of the 19th century. Our results suggest that agricultural land use was most widespread between AD 350 and 1850, which correlates broadly with high values of palynological richness. REVEALS-based evenness was highest between AD 500 and 1600 which indicates a more equal cover among taxa during this time interval. Palynological richness increased during the inferred land-use expansion after AD 350 and decreased during the subsequent regression AD 550-750, while REVEALS-based evenness increased throughout this period. The values of palynological richness during the last few decades are within the range observed during the last 1650 yr. However, REVEALS-based evenness shows much lower values during the last century compared to the previous ca. 2600 yr, which indicates that the composition of present-day vegetation is unusual in a millennial perspective. Our results show that regional scale changes in land use have had clear impacts on floristic diversity in southern Sweden, with a vegetation response time of less than 20 to 50 yr. We show the importance of traditional land use to attain high biodiversity and suggest that ecosystem management should include a regional landscape perspective.
  •  
7.
  •  
8.
  •  
9.
  • Mazier, F., et al. (författare)
  • Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database
  • 2012
  • Ingår i: Review of Palaeobotany and Palynology. - : Elsevier BV. - 0034-6667 .- 1879-0615. ; 187, s. 38-49
  • Tidskriftsartikel (refereegranskat)abstract
    • REVEALS-based quantitative reconstruction of Holocene vegetation cover (expressed in plant functional types. PFTs) is used in the LANDCLIM project to assess the effect of human-induced land-cover change on past climate in NW Europe. Using the Czech Quaternary Pollen Database, this case study evaluates the extent to which selection of data and input parameters for the REVEALS model applications would affect reconstruction outcomes. The REVEALS estimates of PFTs (grid-cell based REVEALS PET estimates, GB REVEALS PFT-s) are calculated for five time windows of the Holocene using fossil pollen records available in each 1 degrees x1 degrees grid cell of the Czech Republic. The input data and parameters selected for testing are: basin type and size, number of C-14 dates used to establish the chronology of the pollen records, number of taxa, and pollen productivity estimates (PPE). We used the Spearman correlation coefficient to test the hypothesis that there is no association between GB REVEALS PET-s using different data and parameter inputs. The results show that differences in the basin size and type, number of dates, number and type of taxa (entomophilous included or not), and PPE dataset do not affect the rank orders of the GB REVEALS PET-s significantly, except for the cases when entomophilous taxa are included. It implies that, given careful selection of data and parameter and interpretation of results, REVEALS applications can use pollen records from lakes and bogs of different sizes together for reconstruction of past land cover at the regional to sub-continental spatial scales for purposes such as the study of past land cover-climate interactions. Our study also provides useful criteria to set up protocols for data compilation REVEALS applications of this kind. (C) 2012 Elsevier B.V. All rights reserved.
  •  
10.
  • Pearce, Elena A., et al. (författare)
  • Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent of vegetation openness in past European landscapes is widely debated. In particular, the temperate forest biome has traditionally been defined as dense, closed-canopy forest; however, some argue that large herbivores maintained greater openness or even wood-pasture conditions. Here, we address this question for the Last Interglacial period (129,000–116,000 years ago), before Homo sapiens–linked megafauna declines and anthropogenic landscape transformation. We applied the vegetation reconstruction method REVEALS to 96 Last Interglacial pollen records. We found that light woodland and open vegetation represented, on average, more than 50% cover during this period. The degree of openness was highly variable and only partially linked to climatic factors, indicating the importance of natural disturbance regimes. Our results show that the temperate forest biome was historically heterogeneous rather than uniformly dense, which is consistent with the dependency of much of contemporary European biodiversity on open vegetation and light woodland.
  •  
11.
  • Roberts, N., et al. (författare)
  • Europe's lost forests : a pollen-based synthesis for the last 11,000 years
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • 8000 years ago, prior to Neolithic agriculture, Europe was mostly a wooded continent. Since then, its forest cover has been progressively fragmented, so that today it covers less than half of Europe's land area, in many cases having been cleared to make way for fields and pasture-land. Establishing the origin of Europe's current, more open land-cover mosaic requires a long-term perspective, for which pollen analysis offers a key tool. In this study we utilise and compare three numerical approaches to transforming pollen data into past forest cover, drawing on >1000 C-14-dated site records. All reconstructions highlight the different histories of the mixed temperate and the northern boreal forests, with the former declining progressively since similar to 6000 years ago, linked to forest clearance for agriculture in later prehistory (especially in northwest Europe) and early historic times (e.g. in north central Europe). In contrast, extensive human impact on the needle-leaf forests of northern Europe only becomes detectable in the last two millennia and has left a larger area of forest in place. Forest loss has been a dominant feature of Europe's landscape ecology in the second half of the current interglacial, with consequences for carbon cycling, ecosystem functioning and biodiversity.
  •  
12.
  •  
13.
  • Strandberg, G., et al. (författare)
  • Regional climate model simulations for Europe at 6 k and 0.2 k yr BP: sensitivity to changes in anthropogenic deforestation.
  • 2013
  • Ingår i: Climate of the Past Discussions. - : Copernicus GmbH. - 1814-9340 .- 1814-9359. ; 9:5, s. 5785-5836
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 k BP and ~0.2 k BP in Europe. We apply RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land cover (deforestation) as simulated by the HYDE model (V + H), and (iii) potential vegetation with anthropogenic land cover as simulated by the KK model (V + K). The KK model estimates are closer to a set of pollen-based reconstructions of vegetation cover than the HYDE model estimates. The climate-model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, simulated deforestation is much more extensive than previously assumed, in particular according to the KK model. This leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe since evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land cover estimate has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a thorough comparison with climate model results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy