SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McClements K.G.) "

Sökning: WFRF:(McClements K.G.)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Cecconello, Marco, et al. (författare)
  • Energetic ion behaviour in MAST
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:1, s. 014006-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies of fast ion transport resulting from a range of instabilities, including n = 1 internal kink modes (fishbones and long-lived modes), toroidal Alfven eigenmodes and sawteeth have been carried out at MAST. Strong correlations were found between relative changes in magnetic edge coils signals, edge D alpha signal a fast ion D alpha system, a prototype collimated neutron flux monitor and a recently installed prototype charged fusion product detector array, indicating both redistribution and loss of fast ions. Preliminary interpretation of these observations with a suite of stability, modelling and interpretative codes is discussed.
  •  
3.
  • Cecconello, Marco, et al. (författare)
  • Impurity transport driven by fishbones in MAST
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In MAST, bursting toroidal Alfven eigenmodes and fishbones are observed to give rise to an asymmetric perturbation to the soft x-ray (SXR) emission close to the magnetic axis which grows and decays on the time scale of the fishbone evolution. As the fishbone nears its maximum amplitude, the SXR emission starts to increase (decrease) at radial positions smaller (larger) than the radial position of the magnetic axis. This trend in the SXR emission persists for a few milliseconds, until the fishbone starts to decay in amplitude and the slower overall trend of the SXR emission once again becomes dominant. A preliminary analysis suggests that the change in the SXR emission is due to the localized accumulation of high-Z impurities, sustained against parallel transport by the effects of fishbones on the fast ion population.
  •  
4.
  • Dendy, R.O., et al. (författare)
  • Energetic particles in magnetic confinement systems : Synergies beyond fusion
  • 2002
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic confinement fusion science leads many other branches of plasma physics in its capacity to predict, interpret and understand the behaviour of energetic particle populations. The range of applications of this capability should be extended, for the mutual benefit of fusion research and of other branches of science. In this paper we review progress in applying fusion-derived techniques to one of the central questions of astrophysics: the origin of the cosmic ray population that is magnetically confined within our Galaxy. While it is widely believed that supernova remnant shocks provide the main acceleration sites for cosmic ray electrons and protons, the fundamental 'injection' problem remains. Namely, how particles are initially accelerated from ambient thermal to mildly relativistic energies, beyond which Fermi-type processes take over. The cosmic ray injection environment is magnetized and has many other physical resemblances to beam-heated and deuterium-tritium tokamak plasmas, in consequence, many of the same physical processes come into play. These include, for example, collective beam-plasma instability, resonant wave-particle coupling, and the stochasticization of particle orbits. A broad range of analytical and numerical techniques familiar in the fusion context has been successfully applied to the injection problem (see, for example, Dieckmann M.E. et al 2000 Astron. Astrophys. 356 377). Ideas from magnetic fusion have also been used to help design and interpret recent magnetized plasma experiments (Woolsey N.C. et al 2001 Phys. Plasmas 8 2439) using the high-power VULCAN laser, which address the cosmic ray injection problem from a new perspective.
  •  
5.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Three-dimensional visualization of electron acceleration in a magnetized plasma
  • 2002
  • Ingår i: IEEE Transactions on Plasma Science. - 0093-3813 .- 1939-9375. ; 30:1 I, s. 20-21
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine wave-particle interactions in a magnetized plasma. We present snapshots of an animation of the three-dimensional electron phase space distribution produced by an electrostatic wave propagating across a magnetic field. The distribution function has been evolved by a particle in cell simulation. The electron phase space has been visualized by distributing the simulation electrons over an array representing phase space density and by volume rendering this array. The results are, due to the choice of initial plasma and wave parameters, of relevance for electron acceleration at astrophysical shocks.
  •  
6.
  • Hobirk, J., et al. (författare)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
7.
  • Jackson, A. R., et al. (författare)
  • Diagnosing fast ion redistribution due to sawtooth instabilities using fast ion deuterium-alpha spectroscopy in the mega amp spherical tokamak
  • 2020
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 60:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparison between fast ion measurements and sawtooth models in the Mega Amp Spherical Tokamak (MAST) is extended to include fast ion deuterium-alpha (FIDA) data. It is concluded that FIDA data cannot be used to distinguish between three alternative models used in the plasma transport/fast particle code TRANSP/NUBEAM to simulate fast ion redistribution during sawteeth. For FIDA lines-of-sight that probe the sawtoothing region, at each sawtooth crash there is an overall drop in the emission of up to 60%. Data from passive FIDA lines-of-sight (i.e.with emission resulting from neutralisation by thermal neutrals in the plasma periphery rather than beam neutrals) show a sudden increase in the emission following sawtooth crashes. The subsequent decay in the emission in these passive channels indicates that redistributed passing fast ions are rapidly lost from the edge region, probably as a result of charge-exchange reactions with edge neutrals.
  •  
8.
  • Jones, O. M., et al. (författare)
  • Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of a comprehensive investigation into the effects of toroidicity-induced Alfven eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code TRANSP, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.
  •  
9.
  • Keeling, D. L., et al. (författare)
  • Mitigation of MHD induced fast-ion redistribution in MAST and implications for MAST-Upgrade design
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomenon of the redistribution of neutral beam fast ions due to magnetohydrodynamic (MHD) activity in plasma has been observed on many tokamaks and more recently has been a focus of research on MAST (Turnyanskiy et al 2013 Nucl. Fusion 53 053016). n = 1 fishbone modes are observed to cause a large decrease in the neutron emission rate indicating the existence of a significant perturbation of the fast-ion population in the plasma. Theoretical work on fishbone modes states that the fast-ion distribution itself acts as the source of free energy driving the modes that cause the redistribution. Therefore a series of experiments have been carried out on MAST to investigate a range of plasma densities at two neutral-beam power levels to determine the region within this parameter space in which fishbone activity and consequent fast-ion redistribution is suppressed. Analysis of these experiments shows complete suppression of fishbone activity at high densities with increasing activity and fast-ion redistribution at lower densities and higher neutral-beam power, accompanied by strong evidence that the redistribution effect primarily affects a specific region in the plasma core with a weaker effect over a wider region of the plasma. The results also indicate the existence of correlations between gradients in the modelled fast-ion distribution function, the amplitude and growth rate of the fishbone modes, and the magnitude of the redistribution effect. The same analysis has been carried out on models of MAST-Upgrade baseline plasma scenarios to determine whether significant fast-ion redistribution due to fishbone modes is likely to occur in that device. A simple change to the neutral-beam injector geometry is proposed which is shown to have a significant mitigating effect in terms of the fishbone mode drive and is therefore expected to allow effective plasma heating and current drive over a wider range of plasma conditions in MAST-Upgrade.
  •  
10.
  • Knight, P.J., et al. (författare)
  • CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code
  • 2012
  • Ingår i: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 183:11, s. 2346-2363
  • Tidskriftsartikel (refereegranskat)abstract
    • A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas on energy confinement timescales. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in toroidal configurations with axisymmetric equilibria. Uniquely, the equilibrium is co-evolved with the turbulence, and is thus modified by it. CENTORI is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor–corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelised using Message Passing Interface (MPI). Illustrative examples of output from simulations of a tearing mode in a large aspect ratio tokamak plasma and of turbulence in an elongated conventional aspect ratio tokamak plasma are provided.
  •  
11.
  • Mantsinen, M. J., et al. (författare)
  • Analysis of ion cyclotron heating and current drive at omega approximate to 2 omega(cH) for sawtooth control in JET plasmas
  • 2002
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 44:8, s. 1521-1542
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron heating and current drive at omega approximate to 2omega(cH) in JET deuterium plasmas with a hydrogen concentration n(H)/(n(D)+n(H)) in the range of 5-15% are analysed, comparing results of numerical computer modelling with experiments. Second harmonic hydrogen damping is found to be maximized by placing the resonance on the, low-field side (LFS) of the torus, which minimizes competing direct electron damping and parasitic high-harmonic D damping in the presence of D beams. The shape of the calculated current perturbation and the radial localization of the heating power density for the LFS resonance are consistent with the experimentally observed evolution of the sawtooth period when the resonance layer moves near the q = 1 surface. Since the calculated driven current is dominated by a current of diamagnetic type caused by finite orbit widths of trapped resonating ions, it is not too sensitive to the ICRF phasing. Control of sawteeth with ion cyclotron current drive using the LFS omega approximate to 2omega(cH) resonance in the present experimental conditions can thus be best obtained by varying the resonance location rather than the ICRF phasing. Due to differences in fast ion orbits, collisional electron heating and fast ion pressure profiles are significantly more peaked for a LFS resonance than for a high-field side (HFS) resonance. For the HFS omega approximate to 2omega(cH) resonance, an enhanced neutron rate is observed in the presence of D beam ions, which is consistent with parasitic D damping at the omega approximate to 2omega(cD) resonance in the plasma centre.
  •  
12.
  • McClements, K. G., et al. (författare)
  • Surfatron and stochastic acceleration of electrons in astrophysical plasmas
  • 2005
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 71:2, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron acceleration by large amplitude electrostatic waves in astro-physical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency ωpe by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If ωpe is much higher than the electron cyclotron frequency Ωe, the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both ωpe/Ωeand the size of the simulation box L. If L is equal to one wavelength, λ0, of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when ωpe/Ω ≃ 100: in this case electrons are accelerated to speeds of up c/2 where c is the speed of light. In a simulation with L = 4λ0 and ωpe/ Ωe = 100, it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if Ωpe/Ωe > 100. It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks.
  •  
13.
  • McClements, K. G., et al. (författare)
  • The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion D alpha (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.
  •  
14.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104008-
  • Tidskriftsartikel (refereegranskat)abstract
    • New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.
  •  
15.
  • Ochoukov, R., et al. (författare)
  • Analysis of high frequency Alfven eigenmodes observed in ASDEX Upgrade plasmas in the presence of RF-accelerated NBI ions
  • 2023
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 63:4, s. 046001-
  • Tidskriftsartikel (refereegranskat)abstract
    • High frequency Alfven eigenmodes in the ion cyclotron frequency range are actively researched on the ASDEX Upgrade tokamak (AUG). The general properties of this particular mode type are: (a) the mode is beam-driven and, if excited, can persist for the entire duration of the beam-on time window; (b) the mode is sub-cyclotron with the frequency omega similar to 0.5 omega (ci), where omega(ci) corresponds to the on-axis cyclotron frequency of the beam ions;
  •  
16.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
17.
  •  
18.
  • Pamela, J., et al. (författare)
  • Overview of results and possibilities for fast particle research on JET
  • 2002
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 42:8, s. 1014-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • The large physical size of the JET tokamak, its heating systems and diagnostics, and its capability to operate with full deuterium-tritium (D-T) plasmas, including high-power tritium neutral beam injection (NBI), give it unique possibilities in fast particle research in fusion plasmas. These have already been used to generate significant (2-3 MW level) power in fusion a-particles in the 1997 D-T campaign. Recent JET experiments have concentrated on two important scenarios of relevance to next-step tokamak devices: the ELMy H-mode plasmas and plasmas with strong internal transport barriers (ITBs). The achieved progress will help in preparation for a possible second D-T experiment on JET. Fast particle studies have also been carried out recently using ion cyclotron resonance heating (ICRH)-accelerated particles and external-excitation methods to study Alfven eigenmodes (AEs). Looking towards the future, the capability of JET will be enhanced by upgrades to the NBI system, ICRH system and various diagnostics. Results of the first JET D-T experiment (DTE1) form a basis on which to elaborate a second D-T experiment (DTE2) which could be proposed after these enhancements. The alpha-physics part of this programme would be divided between the investigation of alpha-particle confinement, heating and loss processes in the 'integrated scenarios' (where the discharge is as close as possible to an ITER-relevant scenario), and dedicated 'alpha-physics' experiments, with specially prepared plasmas. In ELMy H-mode plasmas the fusion performance could roach Q(=P-fusion/P-input) of similar to0.33 at the highest combined heating powers, corresponding to similar to 6x10(-4), allowing a test of the margins of TAE stability in quasi-steady-state conditions. The integrated-scenario fast particle programme could concentrate on the instabilities and heating in plasma regimes with strong steady-state ITBs, with expected Q values similar to0.58 and similar to2x10(-3), demonstrating the compatibility of these operating scenarios with alpha-effects. Excitation of TAEs by alpha-particles in the plasma core could also be studied in such integrated scenarios. An issue which will receive attention is the confinement of MeV energy ions in the centre of ITB plasmas with strongly reversed shear, where the low current density in the centre may lead to the alpha-particles entering loss orbits. In preparation for a D-T campaign, studies of triton burn-up in deuterium ITB plasmas will begin in the 2002 experimental campaigns. Special 'afterglow' experiments to measure TAEs after the termination of the (stabilizing) NBI have already been explored in JET deuterium ITB scenarios and would be planned for DTE2. It is intended to develop special versions of ITB plasmas with dominant ion heating which would maximize the sensitivity to degradation of alpha-heating effects.
  •  
19.
  • Perez, R. V., et al. (författare)
  • Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions
  • 2014
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 85:11, s. 11D701-
  • Tidskriftsartikel (refereegranskat)abstract
    • The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD's compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.
  •  
20.
  • Rivero-Rodriguez, J. F., et al. (författare)
  • Overview of fast particle experiments in the first MAST Upgrade experimental campaigns
  • 2024
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 64:8
  • Tidskriftsartikel (refereegranskat)abstract
    • MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfvénic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in burning plasmas. The MeV range D-D fusion product ions are also produced but are not confined. Simulations with the ASCOT code show that up to 20% of fast ions produced by NBI can be lost due to charge exchange (CX) with edge neutrals. Dedicated experiments employing low field side (LFS) gas fuelling show a significant drop in the measured neutron fluxes resulting from beam-plasma reactions, providing additional evidence of CX-induced fast-ion losses, similar to the ASCOT findings. Clear evidence of fast-ion redistribution and loss due to sawteeth (ST), fishbones (FB), long-lived modes (LLM), Toroidal Alfvén Eigenmodes (TAE), Edge Localised Modes (ELM) and neoclassical tearing modes (NTM) has been found in measurements with a Neutron Camera (NCU), a scintillator-based Fast-Ion Loss Detector (FILD), a Solid-State Neutral Particle Analyser (SSNPA) and a Fast-Ion Deuterium-α (FIDA) spectrometer. Unprecedented FILD measurements in the range of 1-2 MHz indicate that fast-ion losses can be also induced by the beam ion cyclotron resonance interaction with compressional or global Alfvén eigenmodes (CAEs or GAEs). These results show the wide variety of scenarios and the unique conditions in which fast ions can be studied in MAST-U, under conditions that are relevant for future devices like STEP or ITER.
  •  
21.
  • Westerhof, E., et al. (författare)
  • Control of sawteeth and triggering of NTMs with ion cyclotron resonance frequency waves in JET
  • 2002
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 42:11, s. 1324-1334
  • Tidskriftsartikel (refereegranskat)abstract
    • A new scenario to delay or prevent neoclassical tearing mode (NTM) onset is presented. By active sawtooth destabilization, short period and low amplitude sawteeth are generated, such that the sawtooth produced NTM seed island is reduced and the threshold normalized plasma pressure for triggering of NTMs, beta(Nonset), is increased. The scenario has been explored experimentally in the Joint European Torus (JET). Ion cyclotron resonance frequency (ICRF) waves tuned to the 2nd harmonic H-minority resonance have been used for sawtooth control. Whereas ICRF waves generally induce sawtooth stabilization, favouring the triggering of NTMs and reducing beta(Nonset), the present experiments show that by toroidally directed waves, ion cyclotron current drive is produced, and that sawteeth can be destabilized by careful positioning of the 2nd harmonic H resonance layer with respect to the sawtooth inversion radius. As a result, NTM onset is delayed and beta(Nonset) is increased above its value obtained in discharges with additional heating from neutral beam injection alone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy