SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McIlleron Helen) "

Sökning: WFRF:(McIlleron Helen)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bjugård Nyberg, Henrik, 1984-, et al. (författare)
  • Population Pharmacokinetics and Dosing of Ethionamide in Children with Tuberculosis
  • 2020
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 64:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ethionamide has proven efficacy against both drug-susceptible and some drug-resistant strains of Mycobacterium tuberculosis. Limited information on its pharmacokinetics in children is available, and current doses are extrapolated from weight-based adult doses. Pediatric doses based on more robust evidence are expected to improve antituberculosis treatment, especially in small children. In this analysis, ethionamide concentrations in children from 2 observational clinical studies conducted in Cape Town, South Africa, were pooled. All children received ethionamide once daily at a weight-based dose of approximately 20 mg/kg of body weight (range, 10.4 to 25.3 mg/kg) in combination with other first- or second-line antituberculosis medications and with antiretroviral therapy in cases of HIV coinfection. Pharmacokinetic parameters were estimated using nonlinear mixed-effects modeling. The MDR-PK1 study contributed data for 110 children on treatment for multidrug-resistant tuberculosis, while the DATiC study contributed data for 9 children treated for drug-susceptible tuberculosis. The median age of the children in the studies combined was 2.6 years (range, 0.23 to 15 years), and the median weight was 12.5 kg (range, 2.5 to 66 kg). A one-compartment, transit absorption model with first-order elimination best described ethionamide pharmacokinetics in children. Allometric scaling of clearance (typical value, 8.88 liters/h), the volume of distribution (typical value, 21.4 liters), and maturation of clearance and absorption improved the model fit. HIV coinfection decreased the ethionamide bioavailability by 22%, rifampin coadministration increased clearance by 16%, and ethionamide administration by use of a nasogastric tube increased the rate, but the not extent, of absorption. The developed model was used to predict pediatric doses achieving the same drug exposure achieved in 50- to 70-kg adults receiving 750-mg once-daily dosing. Based on model predictions, we recommend a weight-banded pediatric dosing scheme using scored 125-mg tablets.
  •  
2.
  • Chigutsa, Emmanuel, et al. (författare)
  • A Time-to-Event Pharmacodynamic Model Describing Treatment Response in Patients with Pulmonary Tuberculosis Using Days to Positivity in Automated Liquid Mycobacterial Culture
  • 2013
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 57:2, s. 789-795
  • Tidskriftsartikel (refereegranskat)abstract
    • Days to positivity in automated liquid mycobacterial culture have been shown to correlate with mycobacterial load and have been proposed as a useful biomarker for treatment responses in tuberculosis. However, there is currently no quantitative method or model to analyze the change in days to positivity with time on treatment. The objectives of this study were to describe the decline in numbers of mycobacteria in sputum collected once weekly for 8 weeks from patients on treatment for tuberculosis using days to positivity in liquid culture. One hundred forty-four patients with smear-positive pulmonary tuberculosis were recruited from a tuberculosis clinic in Cape Town, South Africa. A nonlinear mixed-effects repeated-time-to-event modeling approach was used to analyze the time-to-positivity data. A biexponential model described the decline in the estimated number of bacteria in patients' sputum samples, while a logistic model with a lag time described the growth of the bacteria in liquid culture. At baseline, the estimated number of rapidly killed bacteria is typically 41 times higher than that of those that are killed slowly. The time to kill half of the rapidly killed bacteria was about 1.8 days, while it was 39 days for slowly killed bacteria. Patients with lung cavitation had higher bacterial loads than patients without lung cavitation. The model successfully described the increase in days to positivity as treatment progressed, differentiating between bacteria that are killed rapidly and those that are killed slowly. Our model can be used to analyze similar data from studies testing new drug regimens.
  •  
3.
  • Denti, Paolo, et al. (författare)
  • Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients With Tuberculosis : A Prospective Population Pharmacokinetic Study
  • 2022
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 75:1, s. 141-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands. Methods Children with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC(0-24h) for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mg center dot h/L). Results In total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to children < 6, 6-13, 13-20. and 20-25 kg, and 0.5 tablet in < 3-month-olds with immature metabolism, improved exposures to all 3 drugs. Conclusions Current pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands. Current pediatric dosing guidelines lead to infant rifampicin exposures much lower than in adults, whereas isoniazid and pyrazinamide exposures are similar. A new fixed-dose combination (FDC) with rifampicin/isoniazid/pyrazinamide 120/35/130 mg and weight bands of < 6, 6-13, 13-20, and 20-25 kg could improve treatment.
  •  
4.
  • Deshpande, Devyani, et al. (författare)
  • D-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal
  • 2018
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 67, s. S308-S316
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. D-cycloserine is used to treat multidrug-resistant tuberculosis. Its efficacy, contribution in combination therapy, and best clinical dose are unclear, also data on the D-cycloserine minimum inhibitory concentration (MIC) distributions is scant. Methods. We performed a systematic search to identify pharmacokinetic and pharmacodynamic studies performed with D-cycloserine. We then performed a combined exposure-effect and dose fractionation study of D-cycloserine in the hollow fiber system model of tuberculosis (HFS-TB). In parallel, we identified D-cycloserine MICs in 415 clinical Mycobacterium tuberculosis (Mtb) isolates from patients. We utilized these results, including intracavitary concentrations, to identify the clinical dose that would be able to achieve or exceed target exposures in 10 000 patients using Monte Carlo experiments (MCEs). Results. There were no published D-cycloserine pharmacokinetics/pharmacodynamics studies identified. Therefore, we performed new HFS-TB experiments. Cyloserine killed 6.3 log(10) colony-forming units (CFU)/mL extracellular bacilli over 28 days. Efficacy was driven by the percentage of time concentration persisted above MIC (% T-MIC), with 1.0 log(10) CFU/mL kill achieved by % T-MIC = 30% (target exposure). The tentative epidemiological cutoff value with the Sensititre MYCOTB assay was 64 mg/L. In MCEs, 750 mg twice daily achieved target exposure in lung cavities of 92% of patients whereas 500 mg twice daily achieved target exposure in 85% of patients with meningitis. The proposed MCE-derived clinical susceptibility breakpoint at the proposed doses was 64 mg/L. Conclusions. Cycloserine is cidal against Mtb. The susceptibility breakpoint is 64 mg/L. However, the doses likely to achieve the cidality in patients are high, and could be neurotoxic.
  •  
5.
  • Elsherbiny, Doaa, et al. (författare)
  • Population pharmacokinetics of lopinavir in combination with rifampicin-based antitubercular treatment in HIV-infected South African children
  • 2010
  • Ingår i: European Journal of Clinical Pharmacology. - : Springer Science and Business Media LLC. - 0031-6970 .- 1432-1041. ; 66:10, s. 1017-1023
  • Tidskriftsartikel (refereegranskat)abstract
    • The population pharmacokinetics (PK) of lopinavir in tuberculosis (TB)/human immunodeficiency virus (HIV) co-infected South African children taking super-boosted lopinavir (lopinavir/ritonavir ratio 1:1) as part of antiretroviral treatment in the presence of rifampicin were compared with the population PK of lopinavir in HIV-infected South African children taking standard doses of lopinavir/ritonavir (ratio 4:1). Lopinavir concentrations were measured in 15 TB/HIV-co-infected paediatric patients who were sampled during and after rifampicin-based TB treatment and in 15 HIV-infected children without TB. During TB therapy, the dose of ritonavir was increased to lopinavir/ritonavir 1:1 in order to compensate for the induction of rifampicin. The children received median (interquartile range=IQR) doses of lopinavir 292 mg/m(2) (274, 309) and ritonavir 301 mg/m(2) (286, 309) twice daily. After TB treatment completion the children received standard doses of lopinavir/ritonavir 4:1 (median [IQR] lopinavir dose 289 mg/m(2) [286, 303] twice daily) as did those without TB (median [IQR] lopinavir dose 265 mg/m(2) [249, 289] twice daily). Lopinavir oral clearance (CL/F) was about 30% lower in children without TB than in co-infected children treated with super-boosted lopinavir. However, the predicted lopinavir C-min was above the recommended minimum therapeutic concentration during TB/HIV co-treatment in the 15 children. Lopinavir CL/F increased linearly during the dosing interval. Increasing the ritonavir dose to achieve a lopinavir/ritonavir ratio of 1:1 when given in combination with rifampicin-based TB treatment did not completely compensate for the enhancement of lopinavir CL/F caused by rifampicin. The time-dependent lopinavir CL/F might be due to a time-dependent recovery from ritonavir inhibition of lopinavir metabolism during the dosing interval.
  •  
6.
  • Elsherbiny, Doaa, et al. (författare)
  • Population pharmacokinetics of nevirapine in combination with rifampicin-based short course chemotherapy in HIV- and tuberculosis-infected South African patients
  • 2009
  • Ingår i: European Journal of Clinical Pharmacology. - : Springer Science and Business Media LLC. - 0031-6970 .- 1432-1041. ; 65:1, s. 71-80
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim was to develop a model to describe the population pharmacokinetics of nevirapine in South African human immunodeficiency virus (HIV)-infected patients who were taking nevirapine-based antiretroviral therapy concomitantly or in the absence of rifampicin-based tuberculosis therapy. Patients were divided into two groups: (1) patients receiving   nevirapine-containing antiretroviral regimen (200 mg twice daily) and continuation phase rifampicin-containing tuberculosis therapy (n = 27) in whom blood samples were obtained before and not less than 14 days after they completed tuberculosis therapy; (2) patients without tuberculosis who were receiving a nevirapine-containing antiretroviral regimen for at least 3 weeks (n = 26). The population pharmacokinetics of nevirapine was described using nonlinear mixed effects modelling   with NONMEM software. Based on the developed model, plasma concentration profiles after 300, 400 and 500 mg of nevirapine twice daily were simulated. Concomitant administration of rifampicin increased nevirapine oral clearance (CL/F) by 37.4% and reduced the absorption rate constant (k(a)) by almost sixfold. Rifampicin reduced the nevirapine average minimum concentration by 39%. Simulated doses of 300 mg twice daily elevated nevirapine concentrations above subtherapeutic levels in most patients, with minimum exposure above the recommended maximum concentration. The area under the concentration-time curve of 12-hydroxynevirapine was not different in the presence of rifampicin. 2-, 3- and 8-Hydroxynevirapine were not detectable (LLOQ = 0.025 mg/L). The developed model adequately describes nevirapine population   pharmacokinetics in a South African population when taken with/and in the absence of rifampicin treatment. The simulations suggest that an increased dose of 300 mg twice daily would achieve adequate nevirapine concentrations in most patients during rifampicin-containing treatment for tuberculosis.
  •  
7.
  • Gafar, Fajri, et al. (författare)
  • Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents : a systematic review and individual patient data meta-analysis
  • 2023
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 61:3
  • Forskningsöversikt (refereegranskat)abstract
    • Background Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level.Methods We systematically searched MEDLINE, Embase and Web of Science (1990–2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration–time curve from 0 to 24 h post-dose (AUC0–24) and peak plasma concentration (Cmax) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0–24 and Cmax were assessed with linear mixed-effects models.Results Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0–24 were summarised for isoniazid (18.7 (95% CI 15.5–22.6) h·mg·L−1), rifampicin (34.4 (95% CI 29.4–40.3) h·mg·L−1), pyrazinamide (375.0 (95% CI 339.9–413.7) h·mg·L−1) and ethambutol (8.0 (95% CI 6.4–10.0) h·mg·L−1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0–24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0–24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0–24 and slow acetylators had higher isoniazid AUC0–24 than intermediate acetylators. Determinants of Cmax were generally similar to those for AUC0–24.Conclusions This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
  •  
8.
  • Hennig, Stefanie, et al. (författare)
  • Population pharmacokinetic drug-drug interaction pooled analysis of existing data for rifabutin and HIV PIs
  • 2016
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 71:5, s. 1330-1340
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Extensive but fragmented data from existing studies were used to describe the drug-drug interaction between rifabutin and HIV PIs and predict doses achieving recommended therapeutic exposure for rifabutin in patients with HIV-associated TB, with concurrently administered PIs.METHODS: Individual-level data from 13 published studies were pooled and a population analysis approach was used to develop a pharmacokinetic model for rifabutin, its main active metabolite 25-O-desacetyl rifabutin (des-rifabutin) and drug-drug interaction with PIs in healthy volunteers and patients who had HIV and TB (TB/HIV).RESULTS: Key parameters of rifabutin affected by drug-drug interaction in TB/HIV were clearance to routes other than des-rifabutin (reduced by 76%-100%), formation of the metabolite (increased by 224% in patients), volume of distribution (increased by 606%) and distribution to the peripheral compartment (reduced by 47%). For des-rifabutin, clearance was reduced by 35%-76% and volume of distribution increased by 67%-240% in TB/HIV. These changes resulted in overall increased exposure to rifabutin in TB/HIV patients by 210% because of the effects of PIs and 280% with ritonavir-boosted PIs.CONCLUSIONS: Given together with non-boosted or ritonavir-boosted PIs, rifabutin at 150 mg once daily results in similar or higher exposure compared with rifabutin at 300 mg once daily without concomitant PIs and may achieve peak concentrations within an acceptable therapeutic range. Although 300 mg of rifabutin every 3 days with boosted PI achieves an average equivalent exposure, intermittent doses of rifamycins are not supported by current guidelines.
  •  
9.
  • Jacobs, Tom G., et al. (författare)
  • Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection : a systematic review
  • 2020
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 75:12, s. 3433-3457
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Management of concomitant use of ART and TB drugs is difficult because of the many drug-drug interactions (DDIs) between the medications. This systematic review provides an overview of the current state of knowledge about the pharmacokinetics (PK) of ART and TB treatment in children with HIV/TB co-infection, and identifies knowledge gaps. Methods: We searched Embase and PubMed, and systematically searched abstract books of relevant conferences, following PRISMA guidelines. Studies not reporting PK parameters, investigating medicines that are not available any Longer or not including children with HIV/TB co-infection were excluded. ALL studies were assessed for quality. Results: In total, 47 studies met the inclusion criteria. No dose adjustments are necessary for efavirenz during concomitant first-Line TB treatment use, but intersubject PK variability was high, especially in children <3 years of age. Super-boosted Lopinavir/ritonavir (ratio 1:1) resulted in adequate Lopinavir trough concentrations during rifampicin co-administration. Double-dosed raltegravir can be given with rifampicin in children >4 weeks old as well as twice-daily dolutegravir (instead of once daily) in children older than 6 years. Exposure to some TB drugs (ethambutol and rifampicin) was reduced in the setting of HIV infection, regardless of ART use. Only Limited PK data of second-Line TB drugs with ART in children who are HIV infected have been published. Conclusions: Whereas integrase inhibitors seem favourable in older children, there are Limited options for ART in young children (<3 years) receiving rifampicin-based TB therapy. The PK of TB drugs in HIV-infected children warrants further research.
  •  
10.
  • Jönsson, Siv, et al. (författare)
  • Population Pharmacokinetics of Ethambutol in South African Tuberculosis Patients
  • 2011
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 55:9, s. 4230-4237
  • Tidskriftsartikel (refereegranskat)abstract
    • Ethambutol, one of four drugs in the first-line antitubercular regimen, is used to protect against rifampin resistance in the event of preexisting resistance to isoniazid. The population pharmacokinetics of ethambutol in South African patients with pulmonary tuberculosis were characterized using nonlinear mixed-effects modeling. Patients from 2 centers were treated with ethambutol (800 to 1,500 mg daily) combined with standard antitubercular medication. Plasma concentrations of ethambutol were measured following multiple doses at steady state and were determined using a validated high-pressure liquid chromatography-tandem mass spectrometric method. The data comprised 189 patients (54% male, 12% HIV positive) weighing 47 kg, on average (range, 29 to 86 kg), and having a mean age of 36 years (range, 16 to 72 years). The estimated creatinine clearance was 79 ml/min (range, 23 to 150 ml/min). A two-compartment model with one transit compartment prior to first-order absorption and allometric scaling by body weight on clearance and volume terms was selected. HIV infection was associated with a 15% reduction in bioavailability. Renal function was not related to ethambutol clearance in this cohort. Interoccasion variability exceeded interindividual variability for oral clearance (coefficient of variation, 36 versus 20%). Typical oral clearance in this analysis (39.9 liters/h for a 50-kg individual) was lower than that previously reported, a finding partly explained by the differences in body weight between the studied populations. In summary, a population model describing the pharmacokinetics of ethambutol in South African tuberculosis patients was developed, but additional studies are needed to characterize the effects of renal function.
  •  
11.
  • Langdon, Grant, et al. (författare)
  • Population pharmacokinetics of rifapentine and its primary desacetyl metabolite in South African tuberculosis patients
  • 2005
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 49:11, s. 4429-4436
  • Tidskriftsartikel (refereegranskat)abstract
    • This study was designed to describe the population pharmacokinetics of rifapentine (RFP) and 25-desacetyl RFP in a South African pulmonary tuberculosis patient population. Special reference was made to studying the influence of previous exposure to rifampin (RIF) and the variability in pharmacokinetic parameters between patients and between occasions and the influence of different covariates. Patients were included in the study if they had been receiving first-line antimycobacterial therapy (rifampin, isoniazid, pyrazinamide, and ethambutol) for not less than 4 weeks and not more than 6 weeks and were divided into three RFP dosage groups based on weight: 600 mg, <45 kg; 750 mg, 46 to 55 kg; and 900 mg, >55 kg. Participants received a single oral dose of RFP together with concomitant antimycobacterial agents, excluding RIF, on study days 1 and 5 after they ingested a soup-based meal. The RFP and 25-desacetyl RFP concentration-time data were analyzed by nonlinear mixed-effect modeling using NONMEM. The pharmacokinetics of the parent drug were modeled separately, and the individual pharmacokinetic parameters were used as inputs for the 25-desacetyl RFP pharmacokinetic model. A one-compartment disposition model was found to best describe the data for both the parent and the metabolite, and the metabolite was assumed to be formed only from the central compartment of the parent drug. Prior treatment with RIF did not alter the pharmacokinetics of RFP but appeared to increase the excretion of 25-desacetyl RFP in a nonlinear fashion. The RFP oral clearance and volume of distribution were found to increase by 0.049 liter/h and 0.691 liter, respectively, with a 1-kg increase from the median weight of 50 kg. The oral clearance of 25-desacetyl RFP was found to be 35% lower in female patients. The model developed here describes the population pharmacokinetics of RFP and its primary metabolite in tuberculosis patients and includes the effects of prior administration with RIF and covariate factors.
  •  
12.
  • Ngwalero, Precious, et al. (författare)
  • Relationship between Plasma and Intracellular Concentrations of Bedaquiline and Its M2 Metabolite in South African Patients with Rifampin-Resistant Tuberculosis
  • 2021
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 65:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
  •  
13.
  • Smythe, Wynand, et al. (författare)
  • A Semimechanistic Pharmacokinetic-Enzyme Turnover Model for Rifampin Autoinduction in Adult Tuberculosis Patients
  • 2012
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 56:4, s. 2091-2098
  • Tidskriftsartikel (refereegranskat)abstract
    • The currently recommended doses of rifampin are believed to be at the lower end of the dose-response curve. Rifampin induces its own metabolism, although the effect of dose on the extent of autoinduction is not known. This study aimed to investigate rifampin autoinduction using a semimechanistic pharmacokinetic-enzyme turnover model. Four different structural basic models were explored to assess whether different scaling methods affected the final covariate selection procedure. Covariates were selected by using a linearized approach. The final model included the allometric scaling of oral clearance and apparent volume of distribution. Although HIV infection was associated with a 30% increase in the apparent volume of distribution, simulations demonstrated that the effect of HIV on rifampin exposure was slight. Model-based simulations showed close-to-maximum induction achieved after 450-mg daily dosing, since negligible increases in oral clearance were observed following the 600-mg/day regimen. Thus, dosing above 600 mg/day is unlikely to result in higher magnitudes of autoinduction. In a typical 55-kg male without HIV infection, the oral clearance, which was 7.76 liters.h(-1) at the first dose, increased 1.82- and 1.85-fold at steady state after daily dosing with 450 and 600 mg, respectively. Corresponding reductions of 41 and 42%, respectively, in the area under the concentration-versus-time curve from 0 to 24 h were estimated. The turnover of the inducible process was estimated to have a half-life of approximately 8 days in a typical patient. Assuming 5 half-lives to steady state, this corresponds to a duration of approximately 40 days to reach the induced state for rifampin autoinduction.
  •  
14.
  • Smythe, Wynand, et al. (författare)
  • Evaluation of Initial and Steady-State Gatifloxacin Pharmacokinetics and Dose in Pulmonary Tuberculosis Patients by Using Monte Carlo Simulations
  • 2013
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 57:9, s. 4164-4171
  • Tidskriftsartikel (refereegranskat)abstract
    • A 4-month regimen of gatifloxacin with rifampin, isoniazid, and pyrazinamide is being evaluated for the treatment of tuberculosis in a phase 3 randomized controlled trial (OFLOTUB). A prior single-dose study found that gatifloxacin exposure increased by 14% in the combination. The aims of the study are to evaluate the initial and steady-state pharmacokinetics of gatifloxacin when daily doses are given to patients with newly diagnosed drug-sensitive pulmonary tuberculosis as part of a combination regimen and to evaluate the gatifloxacin dose with respect to the probability of attaining a pharmacokinetic/pharmacodynamic target. We describe the population pharmacokinetics of gatifloxacin from the first dose to a median of 28 days in 169 adults enrolled in the OFLOTUB trial in Benin, Guinea, Senegal, and South Africa. The probability of achieving a ratio of >= 125 for the area under the concentration time curve to infinity (AUC(0-infinity)) for the free fraction of gatifloxacin over the MIC (fAUC/MIC) was investigated using Monte Carlo simulations. The median AUC(0-infinity) of 41.2 mu g.h/ml decreased on average by 14.3% (90% confidence interval [CI], -90.5% to +61.5%) following multiple 400-mg daily doses. At steady state, 90% of patients achieved an fAUC/MIC of >= 125 only when the MIC was <0.125 mu g/ml. We conclude that systemic exposure to gatifloxacin declines with repeated daily 400-mg doses when used together with rifampin, isoniazid, and pyrazinamide, thus compensating for any initial increase in gatifloxacin levels due to a drug interaction. (The OFLOTUB study has been registered at ClinicalTrials.gov under registration no. NCT00216385.)
  •  
15.
  • Svensson, Elin, 1985-, et al. (författare)
  • Evidence-Based Design of Fixed-Dose Combinations : Principles and Application to Pediatric Anti-Tuberculosis Therapy
  • 2018
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 57:5, s. 591-599
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: Fixed-dose combination formulations where several drugs are included in one tablet are important for the implementation of many long-term multidrug therapies. The selection of optimal dose ratios and tablet content of a fixed-dose combination and the design of individualized dosing regimens is a complex task, requiring multiple simultaneous considerations.METHODS: In this work, a methodology for the rational design of a fixed-dose combination was developed and applied to the case of a three-drug pediatric anti-tuberculosis formulation individualized on body weight. The optimization methodology synthesizes information about the intended use population, the pharmacokinetic properties of the drugs, therapeutic targets, and practical constraints. A utility function is included to penalize deviations from the targets; a sequential estimation procedure was developed for stable estimation of break-points for individualized dosing. The suggested optimized pediatric anti-tuberculosis fixed-dose combination was compared with the recently launched World Health Organization-endorsed formulation.RESULTS: The optimized fixed-dose combination included 15, 36, and 16% higher amounts of rifampicin, isoniazid, and pyrazinamide, respectively. The optimized fixed-dose combination is expected to result in overall less deviation from the therapeutic targets based on adult exposure and substantially fewer children with underexposure (below half the target).CONCLUSION: The development of this design tool can aid the implementation of evidence-based formulations, integrating available knowledge and practical considerations, to optimize drug exposures and thereby treatment outcomes.
  •  
16.
  •  
17.
  • Wilkins, Justin J., et al. (författare)
  • Pharmacometrics in tuberculosis : progress and opportunities
  • 2022
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 60:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuberculosis (TB) remains one of the leading causes of death by a communicable agent, infecting up to one-quarter of the world's population, predominantly in disadvantaged communities. Pharmacometrics employ quantitative mathematical models to describe the relationships between pharmacokinetics and pharmacodynamics, and to predict drug doses, exposures and responses. Pharmacometric approaches have provided a scientific basis for improved dosing of anti-TB drugs and concomitantly administered antiretrovirals at the population level. The development of modelling frameworks including physiologically based pharmacokinetics, quantitative systems pharmacology and machine learning provides an opportunity to extend the role of pharmacometrics to in-silico quantification of drug-drug interactions, prediction of doses for special populations, dose optimization and individualization, and understanding the complex exposure-response relationships of multi-drug regimens in terms of both efficacy and safety, informing regimen design for future study. This short, clinically focused review explores what has been done, and what opportunities exist for pharmacometrics to impact TB pharmacotherapy.
  •  
18.
  • Wilkins, Justin J., et al. (författare)
  • Population Pharmacokinetics of Rifampin in Pulmonary Tuberculosis Patients Including a Semi-mechanistic Model to Describe Variable Absorption
  • 2008
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 52:6, s. 2138-2148
  • Tidskriftsartikel (refereegranskat)abstract
    • This article describes the population pharmacokinetics of rifampin in South African pulmonary tuberculosis patients. Three datasets containing 2,913 rifampin plasma concentration-time data points, collected from 261 South African pulmonary tuberculosis patients aged 18 to 72 years and weighing 28.5 to 85.5 kg and receiving regular daily treatment that included administration of rifampin (450 to 600 mg) for at least 10 days, were pooled. A compartmental pharmacokinetic model was developed using nonlinear mixed-effects modeling. Variability in the shape of the absorption curve was described using a flexible transit compartment model, in which a delay in the onset of absorption and a gradually changing absorption rate were modeled as the passage of drug through a chain of hypothetical compartments, ultimately reaching the absorption compartment. A previously described implementation was extended to allow its application to multiple-dosing data. The typical population estimate of oral clearance was 19.2 liters . h(-1), while the volume of distribution was estimated to be 53.2 liters. Interindividual variability was estimated to be 52.8% for clearance and 43.4% for volume of distribution. Interoccasional variability was estimated for CL/F (22.5%) and mean transit time during absorption (67.9%). The use of single-drug formulations was found to increase both the mean transit time (by 104%) and clearance (by 23.6%) relative to fixed-dose-combination use. A strong correlation between clearance and volume of distribution suggested substantial variability in bioavailability, which could have clinical implications, given the dependence of treatment effectiveness on exposure. The final model successfully described rifampin pharmacokinetics in the population studied and is suitable for simulation in this context.
  •  
19.
  • Wilkins, Justin J., et al. (författare)
  • Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients
  • 2011
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley. - 0306-5251 .- 1365-2125. ; 72:1, s. 51-62
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM This study was designed to characterize the population pharmacokinetics of isoniazid in South African pulmonary tuberculosis patients. METHODS Concentration-time measurements obtained from 235 patients receiving oral doses of isoniazid as part of routine tuberculosis chemotherapy in two clinical studies were pooled and subjected to nonlinear mixed-effects analysis. RESULTS A two-compartmental model, including first-order absorption and elimination with allometric scaling, was found to describe the observed dose-exposure relationship for oral isoniazid adequately. A mixture model was used to characterize dual rates of isoniazid elimination. Estimates of apparent clearance in slow and fast eliminators were 9.70 and 21.6 l h(-1), respectively. The proportion of fast eliminators in the population was estimated to be 13.2%. Central volume of distribution was estimated to be 10% smaller in female patients and clearance was found to be 17% lower in patients with HIV. Variability in absorption rate (90%) was completely interoccasional in nature, whereas in relative bioavailability, interoccasional variability (8.4%) was lower than interindividual variability (26%). Oral doses, given once daily according to dosing policies at the time, were sufficient to reach therapeutic concentrations in the majority of the studied population, regardless of eliminator phenotype. Simulations suggested that current treatment guidelines (5 mg kg(-1)) may be suboptimal in fast eliminators with low body weight. CONCLUSIONS A population pharmacokinetic model was developed to characterize the highly variable pharmacokinetics of isoniazid in a South African pulmonary tuberculosis patient population. Current treatment guidelines may lead to underexposure in rapid isoniazid eliminators.
  •  
20.
  • Wilkins, Justin J., et al. (författare)
  • Variability in the population pharmacokinetics of pyrazinamide in South African tuberculosis patients
  • 2006
  • Ingår i: European Journal of Clinical Pharmacology. - : Springer Science and Business Media LLC. - 0031-6970 .- 1432-1041. ; 62:9, s. 727-735
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: This study was designed to characterize the population pharmacokinetics of pyrazinamide in South African pulmonary tuberculosis patients, with special reference to interindividual and interoccasional variability (IIV and IOV, respectively). METHODS: Concentration-time measurements obtained from 227 patients receiving oral doses of pyrazinamide were pooled to create a dataset containing 3,092 data points spanning multiple dosing occasions. The software program NONMEM was used to analyze the data. RESULTS: A one-compartment model with first-order absorption, including a zero-order component describing release from formulation, and first-order elimination best described the data. The absorption rate constant was estimated to be bimodally distributed between two distinct subgroups, fast and slow, in approximately even proportion. Absorption rate was threefold greater in fast absorbers (3.56 h(-1)) in comparison to slow absorbers (1.25 h(-1)). Typical values of oral clearance and apparent volume of distribution were estimated as 3.42 L h(-1) and 29.2 l, respectively. IOV was supported in oral clearance (0.0238, variance) and absorption rate (0.623, variance). The duration of zero-order absorption was estimated as 0.290 h, and was quite variable between patients (0.957, variance). CONCLUSION: The absorption of pyrazinamide in the studied population was highly variable and two separate subpopulations were identified. IOV accounted for a proportion of the variability in clearance and the absorption rate constant.
  •  
21.
  • Zhang, Chao, et al. (författare)
  • Model-based approach to dose optimization of lopinavir/ritonavir when co-administered with rifampicin
  • 2012
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley. - 0306-5251 .- 1365-2125. ; 73:5, s. 758-767
  • Tidskriftsartikel (refereegranskat)abstract
    • WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: Doubling the dose of lopinavir/ritonavir overcomes the effect of rifampicin on lopinavir concentrations. However, lopinavir concentrations are highly variable and side effects occur commonly. Hence optimized dosing could limit the number of patients exposed to high lopinavir concentrations while maintaining adequate lopinavir concentrations.WHAT THIS STUDY ADDS: We built an integrated population pharmacokinetic model of lopinavir and ritonavir, describing the drug-drug interactions between lopinavir, ritonavir and rifampicin. Based on this model, we have predicted that lower doses of lopinavir/ritonavir can be used in patients weighing less than 50 kg. Also, diurnal variations on lopinavir and ritonavir were investigated for both bioavailability and clearance.  Objectives: Rifampicin, a key component of antitubercular treatment, profoundly reduces lopinavir concentrations. The aim of this study was to develop an integrated population pharmacokinetic model accounting for the drug-drug interactions between lopinavir, ritonavir and rifampicin, and to evaluate optimal doses of lopinavir/ritonavir when co-administered with rifampicin.Methods: Steady state pharmacokinetics of lopinavir and ritonavir were sequentially evaluated after the introduction of rifampicin and gradually escalating the dose in a cohort of 21 HIV-infected adults. Intensive pharmacokinetic sampling was performed after each dose adjustment following a morning dose administered after fasting overnight. A population pharmacokinetic analysis was conducted using NONMEM 7.Results: A simultaneous integrated model was built. Rifampicin reduced the oral bioavailability of lopinavir and ritonavir by 20% and 45% respectively, and it increased their clearance by 71% and 36% respectively. With increasing concentrations of ritonavir, clearance of lopinavir decreased in an E(max) relationship. Bioavailability was 42% and 45% higher for evening doses compared to morning doses for lopinavir and ritonavir, respectively, while oral clearance of both drugs was 33% lower overnight. Simulations predicted that 99.5% of our patients receiving doubled doses of lopinavir/ritonavir achieve morning trough concentrations of lopinavir > 1 mg/L during rifampicin co-administration, and 95% of those weighing less than 50 kg achieve this target already with 600/150 mg doses of lopinavir/ritonavir.Conclusions: The model describes the drug-drug interactions between lopinavir, ritonavir and rifampicin in adults. The higher trough concentrations observed in the morning were explained by both higher bioavailability with the evening meal and lower clearance overnight.
  •  
22.
  • Zhang, Chao, et al. (författare)
  • Model-based evaluation of the pharmacokinetic differences between adults and children for lopinavir and ritonavir in combination with rifampicin
  • 2013
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley. - 0306-5251 .- 1365-2125. ; 76:5, s. 741-751
  • Tidskriftsartikel (refereegranskat)abstract
    • AimsRifampicin profoundly reduces lopinavir concentrations. Doubled doses of lopinavir/ritonavir compensate for the effect of rifampicin in adults, but fail to provide adequate lopinavir concentrations in young children on rifampicin-based antituberculosis therapy. The objective of this study was to develop a population pharmacokinetic model describing the pharmacokinetic differences of lopinavir and ritonavir, with and without rifampicin, between children and adults. MethodsAn integrated population pharmacokinetic model developed in nonmem 7 was used to describe the pharmacokinetics of lopinavir and ritonavir in 21 HIV infected adults, 39 HIV infected children and 35 HIV infected children with tuberculosis, who were established on lopinavir/ritonavir-based antiretroviral therapy with and without rifampicin-containing antituberculosis therapy. ResultsThe bioavailability of lopinavir was reduced by 25% in adults whereas children on antituberculosis treatment experienced a 59% reduction, an effect that was moderated by the dose of ritonavir. Conversely, rifampicin increased oral clearance of both lopinavir and ritonavir to a lesser extent in children than in adults. Rifampicin therapy in administered doses increased CL of lopinavir by 58% in adults and 48% in children, and CL of ritonavir by 34% and 22% for adults and children, respectively. In children, the absorption half-life of lopinavir and the mean transit time of ritonavir were lengthened, compared with those in adults. ConclusionsThe model characterized important differences between adults and children in the effect of rifampicin on the pharmacokinetics of lopinavir and ritonavir. As adult studies cannot reliably predict their magnitude in children, drug-drug interactions should be evaluated in paediatric patient populations.
  •  
23.
  • Zhang, Chao, et al. (författare)
  • Population Pharmacokinetic Model for Adherence Evaluation Using Lamivudine Concentration Monitoring
  • 2012
  • Ingår i: Therapeutic Drug Monitoring. - 0163-4356 .- 1536-3694. ; 34:4, s. 481-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Interpretation of antiretroviral drug concentration measurements could be aided by information about adherence to recent doses. We developed a population pharmacokinetic model of lamivudine in young children to propose reference lamivudine concentrations for evaluation of adherence to recent treatment doses.Methods: The steady state pharmacokinetics of lamivudine were evaluated in 68 young HIV-infected children receiving antiretroviral treatment twice daily. A population pharmacokinetic analysis was conducted using NONMEM 7.Results: A 2-compartment model with transit absorption best described lamivudine pharmacokinetics. After adjustment for maturation and body weight (using allometric scaling), the variability of clearance was small, hence simulations could accurately predict lamivudine concentrations. Higher lamivudine trough concentrations were detected before the morning dose, possibly owing to slower overnight clearance. Reference values for lamivudine concentrations that can be used to evaluate adherence to recent doses are proposed.Conclusions: Lamivudine concentration measurement can be used to assess recent treatment adherence.
  •  
24.
  • Zhang, Chao, et al. (författare)
  • Population pharmacokinetics of lopinavir and ritonavir in combination with rifampicin-based antitubercular treatment in HIV-infected children
  • 2012
  • Ingår i: Antiviral Therapy. - 1359-6535 .- 2040-2058. ; 17:1, s. 25-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The preferred antiretroviral regimen for young children previously exposed to non-nucleoside reverse transcriptase inhibitors is lopinavir/ritonavir plus two nucleoside reverse transcriptase inhibitors. Rifampicin-based antitubercular treatment reduces lopinavir concentrations. Adding extra ritonavir to lopinavir/ritonavir overcomes the effect of rifampicin, however this approach is not feasible in many settings. Methods: We developed an integrated population model describing lopinavir and ritonavir pharmacokinetics to predict lopinavir/ritonavir (4:1) doses achieving target lopinavir exposures in children treated for tuberculosis. The model included data from 15 children given 'superboosted' lopinavir (lopinavir/ritonavir = 1:1) and 20 children given twice the standard dose of lopinavir/ritonavir every 12 h during antitubercular treatment, and from children given standard lopinavir/ritonavir doses every 12 h (39 without tuberculosis and 11 sampled again after antitubercular treatment). Results: A one-compartment model with first-order absorption and elimination best described the pharmacokinetics of lopinavir and a one-compartment model with transit absorption compartments described ritonavir pharmacokinetics. The dynamic influence of ritonavir concentration on lopinavir oral clearance was modelled as direct inhibition with an E-max model. Antitubercular treatment reduced the oral bioavailability of lopinavir by 77% in children receiving twice usual lopinavir/ritonavir doses and increased ritonavir clearance by 50%. Simulations predicted that respective 27, 21, 20 and 18 mg/kg 8-hourly doses of lopinavir (in lopinavir/ritonavir, 4: 1) maintains lopinavir concentrations > 1 mg/l in at least 95% of children weighing 3-5.9, 6-9.9, 10-13.9 and 14-19.9 kg. Conclusions: The model describing the interactions between lopinavir, ritonavir and rifampicin in young children predicted feasible 8-hourly doses of lopinavir/ritonavir resulting in therapeutic lopinavir concentrations during antitubercular treatment.
  •  
25.
  • Zvada, Simbarashe P., et al. (författare)
  • Effects of Four Different Meal Types on the Population Pharmacokinetics of Single-Dose Rifapentine in Healthy Male Volunteers
  • 2010
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 54:8, s. 3390-3394
  • Tidskriftsartikel (refereegranskat)abstract
    • Rifapentine and its primary metabolite, 25-desacetyl rifapentine, are active against mycobacterium tuberculosis. The objectives of this study were to describe the population pharmacokinetics of rifapentine and 25-desacetyl rifapentine in fasting and fed states. Thirty-five male healthy volunteers were enrolled in an open-label, randomized, sequential, five-way crossover study. Participants received a single 900-mg dose of rifapentine after meals with high fat (meal A), bulk and low fat (meal B), bulk and high fat (meal C), high fluid and low fat (meal D), or 200 ml of water (meal E). Venous blood samples were collected over 72 h after each rifapentine dose, and plasma was analyzed for rifapentine and 25-desacetyl rifapentine using high-performance liquid chromatography. Pharmacokinetic data were analyzed by nonlinear mixed-effect modeling using NONMEM. Compared with the fasting state, meal A had the greatest effect on rifapentine oral bioavailability, increasing it by 86%. Meals B, C, and D resulted in 33%, 46%, and 49% increases in rifapentine oral bioavailability, respectively. Similar trends were observed for 25-desacetyl rifapentine. As meal behavior has a substantial impact on rifapentine exposure, it should be considered in the evaluation of optimal dosing approaches.
  •  
26.
  • Zvada, Simbarashe P., et al. (författare)
  • Moxifloxacin Population Pharmacokinetics and Model-Based Comparison of Efficacy between Moxifloxacin and Ofloxacin in African Patients
  • 2014
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 58:1, s. 503-510
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacokinetic exposure and the MIC of fluoroquinolones are important determinants of their efficacy against Mycobacterium tuberculosis. Population modeling was used to describe the steady-state plasma pharmacokinetics of moxifloxacin in 241 tuberculosis (TB) patients in southern Africa. Monte Carlo simulations were applied to obtain the area under the unbound concentration-time curve from 0 to 24 h (fAUC(0-24)) after daily doses of 400 mg or 800 mg moxifloxacin and 800 mg ofloxacin. The MIC distributions of ofloxacin and moxifloxacin were determined for 197 drug-resistant clinical isolates of Mycobacterium tuberculosis. For a specific MIC, the probability of target attainment (PTA) was determined for target fAUC(0-24)/MIC ratios of >= 53 and >= 100. The PTAs were combined with the MIC distributions to calculate the cumulative fraction of response (CFR) for multidrug-resistant (MDR) Mycobacterium tuberculosis strains. Even with the less stringent target ratio of >= 53, moxifloxacin at 400 mg and ofloxacin at 800 mg achieved CFRs of only 84% and 58% for multidrug-resistant isolates with resistance to an injectable drug, while the 800-mg moxifloxacin dose achieved a CFR of 98%. Using a target ratio of >= 100 for multidrug-resistant strains (without resistance to injectable agents or fluoroquinolones), the CFR was 88% for moxifloxacin and only 43% for ofloxacin, and the higher dose of 800 mg moxifloxacin was needed to achieve a CFR target of >90%. Our results indicate that moxifloxacin is more efficacious than ofloxacin in the treatment of MDR-TB. Further studies should determine the optimal pharmacodynamic target for moxifloxacin in a multidrug regimen and clarify safety issues when it is administered at higher doses.
  •  
27.
  • Zvada, Simbarashe P., et al. (författare)
  • Moxifloxacin Population Pharmacokinetics in Patients with Pulmonary Tuberculosis and the Effect of Intermittent High-Dose Rifapentine
  • 2012
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 56:8, s. 4471-4473
  • Tidskriftsartikel (refereegranskat)abstract
    • We described the population pharmacokinetics of moxifloxacin and the effect of high-dose intermittent rifapentine in patients with pulmonary tuberculosis who were randomized to a continuation-phase regimen of 400 mg moxifloxacin and 900 mg rifapentine twice weekly or 400 mg moxifloxacin and 1,200 mg rifapentine once weekly. A two-compartment model with transit absorption best described moxifloxacin pharmacokinetics. Although rifapentine increased the clearance of moxifloxacin by 8% during antituberculosis treatment compared to that after treatment completion without rifapentine, it did not result in a clinically significant change in moxifloxacin exposure.
  •  
28.
  • Zvada, Simbarashe P., et al. (författare)
  • Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis : in silico evaluation of currently recommended doses
  • 2014
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 69:5, s. 1339-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • To describe the population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children and evaluate the adequacy of steady-state exposures. We used previously published data for 76 South African children with tuberculosis to describe the population pharmacokinetics of rifampicin, pyrazinamide and isoniazid. Monte Carlo simulations were used to predict steady-state exposures in children following doses in fixed-dose combination tablets in accordance with the revised guidelines. Reference exposures were derived from an ethnically similar adult population with tuberculosis taking currently recommended doses. The final models included allometric scaling of clearance and volume of distribution using body weight. Maturation was included for clearance of isoniazid and clearance and absorption transit time of rifampicin. For a 2-year-old child weighing 12.5 kg, the estimated typical oral clearances of rifampicin and pyrazinamide were 8.15 and 1.08 L/h, respectively. Isoniazid typical oral clearance (adjusted for bioavailability) was predicted to be 4.44, 11.6 and 14.6 L/h for slow, intermediate and fast acetylators, respectively. Higher oral clearance values in intermediate and fast acetylators also resulted from 23 lower bioavailability compared with slow acetylators. Simulations based on our models suggest that with the new WHO dosing guidelines and utilizing available paediatric fixed-dose combinations, children will receive adequate rifampicin exposures when compared with adults, but with a larger degree of variability. However, pyrazinamide and isoniazid exposures in many children will be lower than in adults. Further studies are needed to confirm these findings in children administered the revised dosages and to optimize pragmatic approaches to dosing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy