SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McKeown Nicola) "

Sökning: WFRF:(McKeown Nicola)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Assimes, Themistocles L., et al. (författare)
  • Lack of Association Between the Trp719Arg Polymorphism in Kinesin-Like Protein-6 and Coronary Artery Disease in 19 Case-Control Studies
  • 2010
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097. ; 56:19, s. 1552-1563
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives We sought to replicate the association between the kinesin-like protein 6 (KIF6) Trp719Arg polymorphism (rs20455), and clinical coronary artery disease (CAD). Background Recent prospective studies suggest that carriers of the 719Arg allele in KIF6 are at increased risk of clinical CAD compared with noncarriers. Methods The KIF6 Trp719Arg polymorphism (rs20455) was genotyped in 19 case-control studies of nonfatal CAD either as part of a genome-wide association study or in a formal attempt to replicate the initial positive reports. Results A total of 17,000 cases and 39,369 controls of European descent as well as a modest number of South Asians, African Americans, Hispanics, East Asians, and admixed cases and controls were successfully genotyped. None of the 19 studies demonstrated an increased risk of CAD in carriers of the 719Arg allele compared with noncarriers. Regression analyses and fixed-effects meta-analyses ruled out with high degree of confidence an increase of >= 2% in the risk of CAD among European 719Arg carriers. We also observed no increase in the risk of CAD among 719Arg carriers in the subset of Europeans with early-onset disease (younger than 50 years of age for men and younger than 60 years of age for women) compared with similarly aged controls as well as all non-European subgroups. Conclusions The KIF6 Trp719Arg polymorphism was not associated with the risk of clinical CAD in this large replication study. (J Am Coll Cardiol 2010;56:1552-63) (C) 2010 by the American College of Cardiology Foundation
  •  
2.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
3.
  • Hruby, Adela, et al. (författare)
  • Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies
  • 2013
  • Ingår i: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 143:3, s. 345-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (In-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [beta = -0.009 mmol/L (95% CI: -0.013, -0.005), P< 0.0001] and insulin (-0.020 In-pmo/L (95% CI: -0.024, -0.017), P< 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P= 0.03) with glucose, and rs11558471 in SLC30A8and rs3740393 near CNNM2showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted. J. Nutr. 143: 345-353, 2013.
  •  
4.
  • Kanoni, Stavroula, et al. (författare)
  • Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant : a 14-cohort meta-analysis
  • 2011
  • Ingår i: Diabetes. - Alexandria : American diabetes association. - 0012-1797 .- 1939-327X. ; 60:9, s. 2407-2416
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants.RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes.RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant.CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.
  •  
5.
  • Marklund, Matti, et al. (författare)
  • Hepatic biotransformation of alkylresorcinols is mediated via cytochrome P450 and β-oxidation : a proof of concept study.
  • 2013
  • Ingår i: Food Chemistry. - : Elsevier BV. - 0308-8146 .- 1873-7072. ; 139:1-4, s. 925-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkylresorcinols (AR) are phenolic lipids present in the bran of some cereals. AR may serve as a biomarker for whole grain wheat and rye intake. While AR pharmacokinetics and two major metabolites have been reported, the metabolic pathways contributing to their relatively rapid elimination from the circulation remain to be speculative. In this study, we investigated if ω- and β-oxidation mediate catabolism of the AR homologue C19:0 to form 3,5-dihydroxybenzoic acid and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), using 3 in vitro platforms, human cytochrome P450 4F2 (CYP4F2), human liver S9, and HepG2 cells. One hydroxylated C19:0 metabolite was formed by CYP4F2 and one hydroxylated and one carboxylated C19:0 were tentatively identified after incubation of AR with S9. The formation of DHPPA was quantifiable when HepG2 cells were treated with C19:0 for 48 h. Our results are consistent with a metabolic pathway by which AR are degraded to phenolic acids via CYP4F2-mediated ω-oxidation and subsequent β-oxidation.
  •  
6.
  • McKeown, Nicola M., et al. (författare)
  • Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study
  • 2016
  • Ingår i: European Journal of Nutrition. - : Springer Science and Business Media LLC. - 1436-6207 .- 1436-6215. ; 55:3, s. 1235-1244
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkylresorcinols (AR) are phenolic lipids present in the bran of wheat and rye. Plasma AR and their urinary metabolites may be suitable biomarkers of whole-grain (WG) wheat and rye consumption. The objective of this study was to examine plasma AR and urinary AR metabolites in response to WG wheat consumption. In a randomized crossover study, 19 subjects (10 males, 9 females; BMI 22.0 kg/m(2); age 26 years) incorporated either 3 servings (48 g) or 6 servings (96 g) of WG wheat daily into their regular diet for 1 week. Subjects completed a 2-week washout period, abstaining from all WG consumption, before each intervention. Fasting blood and 24-h urine were collected before and after each intervention. Plasma AR homologues (C19:0, C21:0, C23:0) were quantified by GC-MS after diethyl ether and solid phase extraction and derivatization. Urinary AR metabolites [3,5-dihydroxybenzoic acid and 3-(3,5-dihydroxyphenyl)-propanoic acid] were determined using HPLC with electrochemical detection after enzymatic deconjugation and ethyl acetate extraction. Urinary total AR metabolites were significantly higher after 6 compared with 3 servings of WG wheat (56 vs. 32 mu mol/day, P < 0.001). This dose-response relationship was independent of age, sex, energy intake, and baseline urinary AR metabolite concentration. Plasma total AR tended to be higher after 6 compared with 3 servings of WG wheat (103.0 vs. 86.9 nmol/L), but this difference was not significant (P = 0.42). The results suggest that urinary AR metabolites from 24-h urine collections may be useful as biomarkers of compliance in intervention studies of WG wheat.
  •  
7.
  •  
8.
  • McKeown, Nicola M., et al. (författare)
  • Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway : a meta-analysis
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:2, s. 317-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fructose-induced metabolic disease. We hypothesise that common variants in 11 genes involved in fructose metabolism and the ChREBP-FGF21 pathway may interact with SSB intake to exacerbate positive associations between higher SSB intake and glycaemic traits. Methods: Data from 11 cohorts (six discovery and five replication) in the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided association and interaction results from 34,748 adults of European descent. SSB intake (soft drinks, fruit punches, lemonades or other fruit drinks) was derived from food-frequency questionnaires and food diaries. In fixed-effects meta-analyses, we quantified: (1) the associations between SSBs and glycaemic traits (fasting glucose and fasting insulin); and (2) the interactions between SSBs and 18 independent SNPs related to the ChREBP-FGF21 pathway. Results: In our combined meta-analyses of discovery and replication cohorts, after adjustment for age, sex, energy intake, BMI and other dietary covariates, each additional serving of SSB intake was associated with higher fasting glucose (β ± SE 0.014 ± 0.004 [mmol/l], p = 1.5 × 10−3) and higher fasting insulin (0.030 ± 0.005 [loge pmol/l], p = 2.0 × 10−10). No significant interactions on glycaemic traits were observed between SSB intake and selected SNPs. While a suggestive interaction was observed in the discovery cohorts with a SNP (rs1542423) in the β-Klotho (KLB) locus on fasting insulin (0.030 ± 0.011 loge pmol/l, uncorrected p = 0.006), results in the replication cohorts and combined meta-analyses were non-significant. Conclusions/interpretation: In this large meta-analysis, we observed that SSB intake was associated with higher fasting glucose and insulin. Although a suggestive interaction with a genetic variant in the ChREBP-FGF21 pathway was observed in the discovery cohorts, this observation was not confirmed in the replication analysis. Trial registration: Trials related to this study were registered at clinicaltrials.govas NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis) and NCT00005152 (Nurses’ Health Study).
  •  
9.
  • Merino, Jordi, et al. (författare)
  • Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium
  • 2019
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 24:12, s. 1920-1932
  • Tidskriftsartikel (refereegranskat)abstract
    • Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10−6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
  •  
10.
  • Nettleton, Jennifer A, et al. (författare)
  • Gene x dietary pattern interactions in obesity : analysis of up to 68 317 adults of European ancestry
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:16, s. 4728-4738
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is highly heritable. Genetic variants showing robust associationswith obesity traits have been identified through genome wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphismswere genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjustedWHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjustedWHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.
  •  
11.
  •  
12.
  • Nettleton, Jennifer A., et al. (författare)
  • Interactions of Dietary Whole-Grain Intake With Fasting Glucose- and Insulin-Related Genetic Loci in Individuals of European Descent A meta-analysis of 14 cohort studies
  • 2010
  • Ingår i: Diabetes Care. - 1935-5548. ; 33:12, s. 2684-2691
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - Whole-grain foods are touted for multiple health benefits including enhancing insulin sensitivity and reducing type 2 diabetes risk Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin RESEARCH DESIGN AND METHODS - Via meta-analysis of data from 14 cohorts comprising similar to 48 000 participants of European descent we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations For tests of interaction we considered a P value <0 0028 (0 05 of 18 tests) as statistically significant RESULTS - Greater whole grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics other dietary and lifestyle factors, and BMI (beta [95% Cl] per 1-serving greater whole grain intake -0 009 mmol/l glucose [-0 013 to -0 0051 P < 0 0001 and -0011 pmol/l [In] insulin [-0 015 to -0 0071 P = 0 0003) No interactions met our multiple testing adjusted statistical significance threshold The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0 006) where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin raising allele
  •  
13.
  • Nettleton, Jennifer A., et al. (författare)
  • Meta-Analysis Investigating Associations Between Healthy Diet and Fasting Glucose and Insulin Levels and Modification by Loci Associated With Glucose Homeostasis in Data From 15 Cohorts
  • 2013
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press (OUP). - 0002-9262 .- 1476-6256. ; 177:2, s. 103-115
  • Forskningsöversikt (refereegranskat)abstract
    • Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 US and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG ( 0.004 mmol/L, 95 confidence interval: 0.005, 0.003) and FI ( 0.008 ln-pmol/L, 95 confidence interval: 0.009, 0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.
  •  
14.
  • Ross, Alastair, 1976, et al. (författare)
  • Recommendations for reporting whole-grain intake in observational and intervention studies
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 101:5, s. 903-907
  • Tidskriftsartikel (refereegranskat)abstract
    • The finding that people who eat the most whole grains have a lower risk of cardiovascular disease and diabetes, compared with those who eat the least, is one of the most consistent findings in nutritional epidemiology. However, criteria for reporting whole-grain intake have varied widely, making it difficult to precisely explore the relation of whole grains and grain components with health outcomes. To enable better understanding of the health benefits of whole grain rich diets, we propose that both observational and intervention studies should as far as possible be required to report as follows when describing whole grains: 1) quantify the amount of whole grain in the food or product in grams on a dry-weight basis, 2) describe the whole-grain definition used, 3) report and separate the different types of grains used, 4) if possible, report the structure of the grains (intact, crushed, partially milled) in foods, and 5) describe the main types of products used and processes used to make them. Added bran and germ should be reported distinctly from whole grains. In addition, we strongly recommend the incorporation of biomarkers of whole-grain intake to check compliance to intervention diets and help attenuate for errors in dietary recall of whole-grain intake. Of these measures, reporting whole-grain intake in grams is essential for future research work in the area. Improving reporting and estimation of whole-grain intake will enable easier comparison between different studies and lead to stronger meta-analyses in the future.
  •  
15.
  • Sawicki, Caleigh M., et al. (författare)
  • Evaluating whole grain intervention study designs and reporting practices using evidence mapping methodology
  • 2018
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643 .- 2072-6643. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Consumption of whole grains have been associated with reduced risk of chronic diseases in many observational studies; yet, results of intervention studies are mixed. We aimed to use evidence mapping to capture the methodological and reporting variability in whole grain intervention studies that may contribute to this inconsistency. We conducted a reproducible search in OVID Medline for whole grain human intervention studies (published 1946 to February 2018). After screening based on a priori criteria, we identified 202 publications describing a total of 213 unique trials. Over half (55%) were acute trials, lasting ≤1 day, 30% were moderate duration studies (up to 6 weeks) and 15% were of longer duration (more than 6 weeks). The majority of acute trials (75%) examined measures of glycaemia and/or insulinemia, while most of the longer trials included measures of cardiometabolic health (71%), appetite/satiety (57%) and weight/adiposity (56%). Among the moderate and long duration trials, there was a wide range of how whole grains were described but only 10 publications referenced an established definition. Only 55% of trials reported the actual amount of whole grains (in grams or servings), while 36% reported the amount of food/product and 9% did not report a dose at all. Of the interventions that provided a mixture of whole grains, less than half (46%) reported the distribution of the different grain types. Reporting of subject compliance also varied and only 22% used independent biomarkers of whole grain intake. This evidence map highlights the need to standardize both study protocols and reporting practices to support effective synthesis of study results and provide a stronger foundation to better inform nutrition scientists and public health policy.
  •  
16.
  • Schunkert, Heribert, et al. (författare)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:4, s. 153-333
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
17.
  • Tanaka, Toshiko, et al. (författare)
  • Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake
  • 2013
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 97:6, s. 1395-1402
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. Design: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 x 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n 7724) provided additional replication data. Results: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (beta +/- SE: 0.25 +/- 0.04%; P = 1.68 x 10(-8)) and lower fat (beta = SE: -0.21 +/- 0.04%; P = 1.57 x 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI) increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (beta +/- SE: 0.10 +/- 0.02%; P = 9.96 x 10(-10)), independent of BMI (after adjustment for BMI, beta +/- SE: 0.08 +/- 0.02%; P = 3.15 x 10(-7)). Conclusion: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
  •  
18.
  • Voight, Benjamin F, et al. (författare)
  • Plasma HDL cholesterol and risk of myocardial infarction : a mendelian randomisation study
  • 2012
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 380:9841, s. 572-580
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.METHODS: We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20,913 myocardial infarction cases, 95,407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FINDINGS: Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10(-13)) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69-2·69, p=2×10(-10)).INTERPRETATION: Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (17)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Orho-Melander, Marju (10)
Lemaitre, Rozenn N. (10)
Cupples, L. Adrienne (10)
Sonestedt, Emily (9)
Hofman, Albert (9)
Uitterlinden, André ... (9)
visa fler...
Siscovick, David S. (9)
Kanoni, Stavroula (9)
van Rooij, Frank J. ... (8)
Wojczynski, Mary K (8)
Nettleton, Jennifer ... (8)
Houston, Denise K. (8)
Mozaffarian, Dariush (7)
Johansson, Ingegerd (7)
Renström, Frida (7)
Hu, Frank B. (7)
Liu, Yongmei (7)
Meigs, James B. (7)
Tanaka, Toshiko (7)
Ngwa, Julius S. (7)
Borecki, Ingrid B. (7)
Deloukas, Panos (6)
Franks, Paul W. (6)
Zillikens, M. Carola (6)
Manichaikul, Ani (6)
Kritchevsky, Stephen ... (6)
Dedoussis, George V. (6)
Bandinelli, Stefania (6)
Ferrucci, Luigi (6)
Viikari, Jorma (5)
Ericson, Ulrika (5)
North, Kari E. (5)
Ingelsson, Erik (5)
Franco, Oscar H. (5)
Pankow, James S. (5)
Raitakari, Olli (5)
Djousse, Luc (5)
Franks, Paul (4)
Salomaa, Veikko (4)
Hallmans, Göran (4)
Smith, Caren E. (4)
Rotter, Jerome I. (4)
Dupuis, Josée (4)
Ordovás, José M. (4)
Prokopenko, Inga (4)
Hivert, Marie-France (4)
Feitosa, Mary F. (4)
Frazier-Wood, Alexis ... (4)
Ye, Zheng (4)
Follis, Jack L. (4)
visa färre...
Lärosäte
Lunds universitet (12)
Uppsala universitet (8)
Umeå universitet (7)
Karolinska Institutet (7)
Chalmers tekniska högskola (4)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy