SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(McRobb M.) "

Search: WFRF:(McRobb M.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sinn, T., et al. (author)
  • Results of rexus12's suaineadh experiment : Deployment of a spinning space web in micro gravity conditions
  • 2012
  • In: Proceedings of the International Astronautical Congress, IAC. - : International Astronautical Federation. - 9781622769797 ; , s. 803-810
  • Conference paper (peer-reviewed)abstract
    • On the 19th of March 2012, the Suaineadh experiment was launched onboard the sounding rocket REXUS12 (Rocket Experiments for University Students) from the Swedish launch base ESRANGE in Kiruna. The Suaineadh experiment served as a technology demonstrator for a space web deployed by a spinning assembly. The deployment of this web is a stepping stone for the development of ever larger structures in space. Such a structure could serve as a substructure for solar arrays, transmitters and/or antennas. The team was comprised of students from the University of Strathclyde (Glasgow, UK), the University of Glasgow (Glasgow, UK) and the Royal Institute of Technology (Stockholm, Sweden), designing, manufacturing and testing the experiment over the past 24 months. Following launch, the experiment was ejected from the ejection barrel located within the nosecone of the rocket. Centrifugal forces acting upon the space webs spinning assembly were used to stabilise the experiment's platform. A specifically designed spinning reaction wheel, with an active control method, was used. Once the experiment's motion was controlled, a 2 m by 2 m space web is released. Four daughter sections situated in the corners of the square web served as masses to stabilise the web due to the centrifugal forces acting on them. The four daughter sections contained inertial measurement units (IMUs). Each IMU provided acceleration and velocity measurements in all three directions. Through this, the positions of the four corners could be found through integration with respect to known time of the accelerations and rotations. Furthermore, four cameras mounted on the central hub section captured high resolution imagery of the deployment process. After the launch of REXUS12, the recovery helicopter was unable to locate the ejected experiment, but 22 pictures were received over the wireless connection between the experiment and the rocket. The last received picture was taken at the commencement of web deployment. Inspection of these pictures allowed the assumption that the experiment was fully functional after ejection, but perhaps through tumbling of either the experiment or the rocket, the wireless connection was interrupted. A recovery mission in the middle of August was only able to find the REXUS12 motor and the payload impact location.
  •  
2.
  • Sinn, T., et al. (author)
  • Lessons learned from three university experiments onboard the REXUS/BEXUS sounding rockets and stratospheric balloons
  • 2013
  • In: 64th International Astronautical Congress 2013. - : International Astronautical Federation. - 9781629939094 ; , s. 7965-7976
  • Conference paper (peer-reviewed)abstract
    • Over the last three years the authors have been involved in three experiments that were or will be launched on sounding rockets and high altitude balloons with the REXUS/BEXUS program (Rocket-borne / Balloon-borne Experiments for University Students). The first experiment, called Suaineadh was launched from Esrange (Kiruna, Sweden) onboard REXUS 12 in March 2012. Suaineadh had the purpose of deploying a web in space by using centrifugal forces. The payload was lost during re-entry but was recovered 18 month later in early September 2013. StrathSat-R is the second experiment, which had the purpose of deploying two cube satellites with inflatable structures from the REXUS 13 sounding rocket, was launched first in May 2013 and will be launched a second time in spring 2014. The last experiment is the iSEDE experiment which has the goal of deploying an inflatable structure with disaggregated electronics from the high altitude balloon BEXUS15/16 in October 2013. All these experiments have been designed, built and flown in a timeframe of one and a half to two years. This paper will present the lessons learned in project management, outreach, experiment design, fabrication and manufacturing, software design and implementation, testing and validation as well as launch, flight and post-flight. Furthermore, the lessons learned during the recovery mission of Suaineadh will be discussed as well. All these experiments were designed, built and tested by a large group of university students of various disciplines and different nationalities. StrathSat-R and iSEDE were built completely at Strathclyde but the Suaineadh experiment was a joint project between Glasgow and Stockholm which was especially tricky during integration while approaching the experiment delivery deadline. This paper should help students and professionals across various disciplines to build and organise these kinds of projects more efficiently without making the same, sometimes expensive, mistakes all over again.
  •  
3.
  • Vasile, Massimiliano, et al. (author)
  • The Suaineadh Project : a Stepping Stone Towards the Deployment of Large Flexible Structures in Space
  • 2010
  • In: Proceedings of the 61<sup>st</sup> International Astronautical Congress. - : the International Astronautical Federation. ; , s. IAC-10-C3.4-
  • Conference paper (peer-reviewed)abstract
    • The Suaineadh project aims at testing the controlled deployment and stabilization of space web. The deployment system is based on a simple yet ingenious control of the centrifugal force that will pull each of the four daughters sections apart. The four daughters are attached onto the four corners of a square web, and will be released from their initial stowed configuration attached to a central hub. Enclosed in the central hub is a specifically designed spinning reaction wheel that controls the rotational speed with a closed loop control fed by measurements from an onboard inertial measurement sensor. Five other such sensors located within the web and central hub provide information on the surface curvature of the web, and progression of the deployment. Suaineadh is currently at an advanced stage of development: all the components are manufactured with the subsystems integrated and are presently awaiting full integration and testing. This paper will present the current status of the Suaineadh project and the results of the most recent set of tests. In particular, the paper will cover the overall mechanical design of the system, the electrical and sensor assemblies, the communication and power systems and the spinning wheel with its control system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view