SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Medany Shymaa S.) "

Sökning: WFRF:(Medany Shymaa S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albaqami, Munirah D., et al. (författare)
  • The fast nucleation/growth of Co3O4 nanowires on cotton silk : the facile development of a potentiometric uric acid biosensor
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 12:29, s. 18321-18332
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 +/- 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec(-1). Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.
  •  
2.
  • Bhatti, Muhammad Ali, et al. (författare)
  • Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue
  • 2022
  • Ingår i: Journal of cluster science. - : SPRINGER/PLENUM PUBLISHERS. - 1040-7278 .- 1572-8862. ; 33:4, s. 1445-1456
  • Tidskriftsartikel (refereegranskat)abstract
    • In this research work, we have produced tungsten (W) doped ZnO nanostructures via low-temperature aqueous chemical growth method. The morphology, crystal arrays and composition was investigated by scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and energy dispersive X-rays (EDX) respectively. The SEM results indicate the nanowire morphology before and after the doping of W into ZnO and XRD study has shown the hexagonal crystallography of W doped ZnO samples. The EDX study has confirmed the successful doping of W into ZnO crystal lattices. The photodegradation performance of methylene blue was evaluated with W doped ZnO samples and pristine ZnO in aqueous solution. The measured degradation efficiencies for the different W doped ZnO samples were 5 wt%, 10 wt%, 15 wt% and 20 wt% at pH 5 are 87.8%, 92.3%, 92.8% and 96.9%), at pH 9 (72.1%, 90.7%, 92.1%, and 96.4%) and at pH 11 (80%, 85%, 87% and 89%) for the time interval of 90 min respectively. The pH of dye solution has significant effect on the degradation efficiency. These findings show that the W doped ZnO samples have superior degradation efficiency of 96.6% in a very short interval of time. The swift degradation kinetics for the W doped ZnO samples is attributed to the reduction in the energy band gap, decrease in particle size, enhanced surface area, decrease in the recombination rate and foster charge separation process. The obtained results are exciting and providing efficient earth-abundant photocatalysts for the energy and environmental purposes.Kindly confirm the Given names and Family names for all the authors.They are correct.
  •  
3.
  • Chang, Abdul Sattar, et al. (författare)
  • Pd-Co3O4-based nanostructures for the development of enzyme-free glucose sensor
  • 2022
  • Ingår i: Bulletin of Materials Science. - : INDIAN ACAD SCIENCES. - 0250-4707 .- 0973-7669. ; 45:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we report enzyme-free glucose sensors based on palladium (Pd) nanoparticles deposited onto Co3O4 nanostructures. A simple, low-temperature aqueous method was used for the fabrication of Co3O4 nanostructures. Then, Pd nanoparticles were decorated onto Co3O4 nanostructures using the ultraviolet reduction method. Morphology, elemental composition and crystalline features of the proposed composite nanostructures were investigated by powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. Cyclic voltammetry and linear sweep voltammetry were used to investigate the electrochemical behaviour of Pd-Co3O4 nanostructures during glucose sensing. The proposed nanostructures showed excellent electrochemical activity for the quantitative detection of glucose at a potential of 0.6 V vs. Ag/AgCl. Importantly, the fabricated enzyme-free glucose sensor shows a linear response over the range of 1-6.0 mM glucose, with a limit of detection of 0.01 mM. The interference study was also carried out to probe the selectivity of Pd-Co3O4 nanostructures towards glucose detection in the presence of different interfering substances. The combined results attest that the as-synthesized Pd-Co3O4 nanostructures are highly stable and selective for the detection of glucose, suggesting their great potential for the quantitative determination of glucose in different biological fluids.
  •  
4.
  • Mangrio, Sanjha, et al. (författare)
  • Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications
  • 2023
  • Ingår i: Biosensors. - : MDPI. - 2079-6374. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrochemical performance of NiCo2O4 with urea precursors was evaluated in order to develop a non-enzymatic urea sensor. In this study, NiCo2O4 nanostructures were synthesized hydrothermally at different concentrations of urea and characterized using scanning electron microscopy and X-ray diffraction. Nanostructures of NiCo2O4 exhibit a nanorod-like morphology and a cubic phase crystal structure. Urea can be detected with high sensitivity through NiCo2O4 nanostructures driven by urea precursors under alkaline conditions. A low limit of detection of 0.05 and an analytical range of 0.1 mM to 10 mM urea are provided. The concentration of 006 mM was determined by cyclic voltammetry. Chronoamperometry was used to determine the linear range in the range of 0.1 mM to 8 mM. Several analytical parameters were assessed, including selectivity, stability, and repeatability. NiCo2O4 nanostructures can also be used to detect urea in various biological samples in a practical manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy