SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Medling Anne M.) "

Sökning: WFRF:(Medling Anne M.)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armus, Lee, et al. (författare)
  • GOALS-JWST: Mid-infrared Spectroscopy of the Nucleus of NGC 7469
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 942:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present mid-infrared spectroscopic observations of the nucleus of the nearby Seyfert galaxy NGC 7469 taken with the MIRI instrument on the James Webb Space Telescope (JWST) as part of Directors Discretionary Time Early Release Science program 1328. The high-resolution nuclear spectrum contains 19 emission lines covering a wide range of ionization. The high-ionization lines show broad, blueshifted emission reaching velocities up to 1700 km s−1 and FWHM ranging from ∼500 to 1100 km s−1. The width of the broad emission and the broad-to-narrow line flux ratios correlate with ionization potential. The results suggest a decelerating, stratified, AGN-driven outflow emerging from the nucleus. The estimated mass outflow rate is 1-2 orders of magnitude larger than the current black hole accretion rate needed to power the AGN. Eight pure rotational H2 emission lines are detected with intrinsic widths ranging from FWHM ∼125 to 330 km s−1. We estimate a total mass of warm H2 gas of ∼1.2 × 107 M ⊙ in the central 100 pc. The PAH features are extremely weak in the nuclear spectrum, but a 6.2 μm PAH feature with an equivalent width of ∼0.07 μm and a flux of 2.7 × 10−17 W m−2 is detected. The spectrum is steeply rising in the mid-infrared, with a silicate strength of ∼0.02, significantly smaller than seen in most PG QSOs but comparable to other Seyfert 1s. These early MIRI mid-infrared IFU data highlight the power of JWST to probe the multiphase interstellar media surrounding actively accreting supermassive black holes.
  •  
2.
  • Bianchin, Marina, et al. (författare)
  • GOALS-JWST: Gas Dynamics and Excitation in NGC 7469 Revealed by NIRSpec
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 965:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new JWST NIRSpec integral field spectroscopy (IFS) data for the luminous infrared galaxy NGC 7469, a nearby (70.6 Mpc) active galaxy with a Seyfert 1.5 nucleus that drives a highly ionized gas outflow and a prominent nuclear star-forming ring. Using the superb sensitivity and high spatial resolution of the JWST instrument NIRSpec IFS, we investigate the role of the Seyfert nucleus in the excitation and dynamics of the circumnuclear gas. Our analysis focuses on the [Fe ii], H2, and hydrogen recombination lines that trace the radiation/shocked-excited molecular and ionized interstellar medium around the active galactic nucleus (AGN). We investigate gas excitation through H2/Brγ and [Fe ii]/Paβ emission line ratios and find that photoionization by the AGN dominates within the central 300 pc of the galaxy except in a small region that shows signatures of shock-heated gas; these shock-heated regions are likely associated with a compact radio jet. In addition, the velocity field and velocity dispersion maps reveal complex gas kinematics. Rotation is the dominant feature, but we also identify noncircular motions consistent with gas inflows as traced by the velocity residuals and the spiral pattern in the Paα velocity dispersion map. The inflow is 2 orders of magnitude higher than the AGN accretion rate. The compact nuclear radio jet has enough power to drive the highly ionized outflow. This scenario suggests that the inflow and outflow are in a self-regulating feeding-feedback process, with a contribution from the radio jet helping to drive the outflow.
  •  
3.
  • Bohn, Thomas, et al. (författare)
  • GOALS-JWST: NIRCam and MIRI Imaging of the Circumnuclear Starburst Ring in NGC 7469
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 942:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present James Webb Space Telescope (JWST) imaging of NGC 7469 with the Near-Infrared Camera and the Mid-InfraRed Instrument. NGC 7469 is a nearby, z = 0.01627, luminous infrared galaxy that hosts both a Seyfert Type-1.5 nucleus and a circumnuclear starburst ring with a radius of ∼0.5 kpc. The new near-infrared (NIR) JWST imaging reveals 66 star-forming regions, 37 of which were not detected by Hubble Space Telescope (HST) observations. Twenty-eight of the 37 sources have very red NIR colors that indicate obscurations up to A v ∼ 7 and a contribution of at least 25% from hot dust emission to the 4.4 μm band. Their NIR colors are also consistent with young (<5 Myr) stellar populations and more than half of them are coincident with the mid-infrared (MIR) emission peaks. These younger, dusty star-forming regions account for ∼6% and ∼17% of the total 1.5 and 4.4 μm luminosity of the starburst ring, respectively. Thanks to JWST, we find a significant number of young dusty sources that were previously unseen due to dust extinction. The newly identified 28 young sources are a significant increase compared to the number of HST-detected young sources (4-5). This makes the total percentage of the young population rise from ∼15% to 48%. These results illustrate the effectiveness of JWST in identifying and characterizing previously hidden star formation in the densest star-forming environments around active galactic nuclei (AGN).
  •  
4.
  • Evans, Aaron S., et al. (författare)
  • GOALS-JWST: Hidden Star Formation and Extended PAH Emission in the Luminous Infrared Galaxy VV 114
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 940:1
  • Tidskriftsartikel (refereegranskat)abstract
    • James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) images of the luminous infrared (IR) galaxy VV 114 are presented. This redshift ∼0.020 merger has a western component (VV 114W) rich in optical star clusters and an eastern component (VV 114E) hosting a luminous mid-IR nucleus hidden at UV and optical wavelengths by dust lanes. With MIRI, the VV 114E nucleus resolves primarily into bright NE and SW cores separated by 630 pc. This nucleus comprises 45% of the 15 μm light of VV 114, with the NE and SW cores having IR luminosities, L IR(8 − 1000 μm) ∼ 8 ± 0.8 × 1010 L ⊙ and ∼ 5 ± 0.5 × 1010 L ⊙, respectively, and IR densities, ΣIR ≳ 2 ± 0.2 × 1013 L ⊙ kpc−2 and ≳ 7 ± 0.7 × 1012 L ⊙ kpc−2, respectively—in the range of ΣIR for the Orion star-forming core and the nuclei of Arp 220. The NE core, previously speculated to have an active galactic nucleus (AGN), has starburst-like mid-IR colors. In contrast, the VV 114E SW core has AGN-like colors. Approximately 40 star-forming knots with L IR ∼ 0.02-5 × 1010 L ⊙ are identified, 28% of which have no optical counterpart. Finally, diffuse emission accounts for 40%-60% of the mid-IR emission. Mostly notably, filamentary polycyclic aromatic hydrocarbon (PAH) emission stochastically excited by UV and optical photons accounts for half of the 7.7 μm light of VV 114. This study illustrates the ability of JWST to detect obscured compact activity and distributed PAH emission in the most extreme starburst galaxies in the local universe.
  •  
5.
  • Inami, H., et al. (författare)
  • GOALS-JWST: Unveiling Dusty Compact Sources in the Merging Galaxy IIZw096
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 940:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared images of IIZw096, a merging luminous infrared galaxy (LIRG) at z = 0.036. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (L IR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40%-70% of the IR bolometric luminosity, or 3-5 × 1011 L ⊙, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least 3-5 × 1012 L ⊙ kpc−2. In addition, we detect 11 other star-forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.
  •  
6.
  • Lai, Thomas, et al. (författare)
  • GOALS-JWST: Small Neutral Grains and Enhanced 3.3 μm PAH Emission in the Seyfert Galaxy NGC 7469
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) integral field spectroscopy of the nearby luminous infrared galaxy NGC 7469. We take advantage of the high spatial/spectral resolution and wavelength coverage of JWST/NIRSpec to study the 3.3 μm neutral polycyclic aromatic hydrocarbon (PAH) grain emission on ∼200 pc scales. A clear change in the average grain properties between the star-forming ring and the central AGN is found. Regions in the vicinity of the AGN, with [Ne iii]/[Ne ii] > 0.25, tend to have larger grain sizes and lower aliphatic-to-aromatic (3.4/3.3) ratios, indicating that smaller grains are preferentially removed by photodestruction in the vicinity of the AGN. PAH emission at the nucleus is weak and shows a low 11.3/3.3 PAH ratio. We find an overall suppression of the total PAH emission relative to the ionized gas in the central 1 kpc region of the AGN in NGC 7469 compared to what has been observed with Spitzer on 3 kpc scales. However, the fractional 3.3 μm-to-total PAH power is enhanced in the starburst ring, possibly due to a variety of physical effects on subkiloparsec scales, including recurrent fluorescence of small grains or multiple photon absorption by large grains. Finally, the IFU data show that while the 3.3 μm PAH-derived star formation rate (SFR) in the ring is 27% higher than that inferred from the [Ne ii] and [Ne iii] emission lines, the integrated SFR derived from the 3.3 μm feature would be underestimated by a factor of 2 due to the deficit of PAHs around the AGN, as might occur if a composite system like NGC 7469 were to be observed at high redshift.
  •  
7.
  • Lai, Thomas, et al. (författare)
  • GOALS-JWST: Tracing AGN Feedback on the Star-forming Interstellar Medium in NGC 7469
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 941:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) integral-field spectroscopy of the nearby merging, luminous infrared galaxy, NGC 7469. This galaxy hosts a Seyfert type-1.5 nucleus, a highly ionized outflow, and a bright, circumnuclear star-forming ring, making it an ideal target to study active galactic nucleus (AGN) feedback in the local universe. We take advantage of the high spatial/spectral resolution of JWST/ MIRI to isolate the star-forming regions surrounding the central active nucleus and study the properties of the dust and warm molecular gas on ∼100 pc scales. The starburst ring exhibits prominent polycyclic aromatic hydrocarbon (PAH) emission, with grain sizes and ionization states varying by only ∼30%, and a total star formation rate of 10–30 Me yr−1 derived from fine structure and recombination emission lines. Using pure rotational lines of H2 we detect 1.2 × 107 Me of warm molecular gas at a temperature higher than 200 K in the ring. All PAH bands get significantly weaker toward the central source, where larger and possibly more ionized grains dominate the emission, likely the result of the ionizing radiation and/or the fast wind emerging from the AGN. The small grains and warm molecular gas in the bright regions of the ring however display properties consistent with normal star-forming regions. These observations highlight the power of JWST to probe the inner regions of dusty, rapidly evolving galaxies for signatures of feedback and inform models that seek to explain the coevolution of supermassive black holes and their hosts.
  •  
8.
  • Linden, S. T., et al. (författare)
  • GOALS-JWST: Revealing the Buried Star Clusters in the Luminous Infrared Galaxy VV 114
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a James Webb Space Telescope NIRCam investigation into the young massive star cluster (YMC) population in the luminous infrared galaxy VV 114. We identify 374 compact YMC candidates with signal-to-noise ratios ≥ 3, 5, and 5 at F150W, F200W, and F356W, respectively. A direct comparison with our HST cluster catalog reveals that ∼20% of these sources are undetected at optical wavelengths. Based on yggdrasil stellar population models, we identify 17 YMC candidates in our JWST imaging alone with F150W - F200W and F200W - F356W colors suggesting they are all very young, dusty (A V = 5-15), and massive (105.8 < M ⊙ < 106.1). The discovery of these “hidden” sources, many of which are found in the “overlap” region between the two nuclei, quadruples the number of t < 3 Myr clusters and nearly doubles the number of t < 6 Myr clusters detected in VV 114. Now extending the cluster age distribution ( dN / d τ ∝ τ γ ) to the youngest ages, we find a slope of γ = −1.30 ± 0.39 for 106 < τ(yr) < 107, which is consistent with the previously determined value from 107 < τ(yr) < 108.5, and confirms that VV 114 has a steep age distribution slope for all massive star clusters across the entire range of cluster ages observed. Finally, the consistency between our JWST- and HST-derived age distribution slopes indicates that the balance between cluster formation and destruction has not been significantly altered in VV 114 over the last 0.5 Gyr.
  •  
9.
  • Rich, Jeffrey A., et al. (författare)
  • GOALS-JWST: Pulling Back the Curtain on the AGN and Star Formation in VV 114
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the James Webb Space Telescope Director’s Discretionary Time Early Release Science program 1328 targeting the nearby, luminous infrared galaxy, VV 114. We use the MIRI and NIRSpec instruments to obtain integral-field spectroscopy of the heavily obscured eastern nucleus (V114E) and surrounding regions. The spatially resolved, high-resolution spectra reveal the physical conditions in the gas and dust over a projected area of 2-3 kpc that includes the two brightest IR sources, the NE and SW cores. Our observations show for the first time spectroscopic evidence that the SW core hosts an active galactic nucleus as evidenced by its very low 6.2 μm and 3.3 μm polycyclic aromatic hydrocarbon equivalent widths (0.12 and 0.017 μm, respectively) and mid- and near-IR colors. Our observations of the NE core show signs of deeply embedded star formation including absorption features due to aliphatic hydrocarbons, large quantities of amorphous silicates, as well as HCN due to cool gas along the line of sight. We detect elevated [Fe ii]/Pfα consistent with extended shocks coincident with enhanced emission from warm H2, far from the IR-bright cores and clumps. We also identify broadening and multiple kinematic components in both H2 and fine structure lines caused by outflows and previously identified tidal features.
  •  
10.
  • Vivian, U., et al. (författare)
  • GOALS-JWST: Resolving the Circumnuclear Gas Dynamics in NGC 7469 in the Mid-infrared
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 940:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst-AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9-7.6 μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Fe ii] λ5.34 μm and [Ar ii] λ6.99 μm lines are bright on the nucleus and in the starburst ring, as opposed to H2 S(5) λ6.91 μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mg v] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2 and [Fe ii] ∼ 180 pc from the AGN that also show high L(H2)/L(PAH) and L([Fe ii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies.
  •  
11.
  • Buiten, Victorine A., et al. (författare)
  • GOALS-JWST: Mid-infrared Molecular Gas Excitation Probes the Local Conditions of Nuclear Star Clusters and the Active Galactic Nucleus in the LIRG VV 114
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 966:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The enormous increase in mid-IR sensitivity and spatial and spectral resolution provided by the JWST spectrographs enables, for the first time, detailed extragalactic studies of molecular vibrational bands. This opens an entirely new window for the study of the molecular interstellar medium in luminous infrared galaxies (LIRGs). We present a detailed analysis of rovibrational bands of gas-phase CO, H2O, C2H2, and HCN toward the heavily obscured eastern nucleus of the LIRG VV 114, as observed by NIRSpec and the medium resolution spectrograph on the Mid-InfraRed Instrument (MIRI MRS). Spectra extracted from apertures of 130 pc in radius show a clear dichotomy between the obscured active galactic nucleus (AGN) and two intense starburst regions. We detect the 2.3 μm CO bandheads, characteristic of cool stellar atmospheres, in the star-forming regions, but not toward the AGN. Surprisingly, at 4.7 μm, we find highly excited CO (T ex ≈ 700-800 K out to at least rotational level J = 27) toward the star-forming regions, but only cooler gas (T ex ≈ 200 K) toward the AGN. We conclude that only mid-infrared pumping through the rovibrational lines can account for the equilibrium conditions found for CO and H2O in the deeply embedded starbursts. Here, the CO bands probe regions with an intense local radiation field inside dusty young massive star clusters or near the most massive young stars. The lack of high-excitation molecular gas toward the AGN is attributed to geometric dilution of the intense radiation from the bright point source. An overview of the relevant excitation and radiative transfer physics is provided in an appendix.
  •  
12.
  • Luo, Yuanze, et al. (författare)
  • A Multiwavelength View of IC 860: What Is in Action inside Quenching Galaxies * * Herschel is an ESA space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA.
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 938:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a multiwavelength study of IC 860, a nearby post-starburst galaxy at the early stage of transitioning from blue and star forming to red and quiescent. Optical images reveal a galaxy-wide, dusty outflow originating from a compact core. We find evidence for a multiphase outflow in the molecular and neutral gas phase from the CO position-velocity diagram and NaD absorption features. We constrain the neutral mass outflow rate to be ∼0.5 M ⊙ yr−1, and the total hydrogen mass outflow rate to be ∼12 M ⊙ yr−1. Neither outflow component seems able to escape the galaxy. We also find evidence for a recent merger in the optical images, CO spatial distribution, and kinematics, and evidence for a buried active galactic nucleus in the optical emission line ratios, mid-IR properties, and radio spectral shape. The depletion time of the molecular gas reservoir under the current star formation rate is ∼7 Gyr, indicating that the galaxy could stay at the intermediate stage between the blue and red sequence for a long time. Thus the timescales for a significant decline in star formation rate (quenching) and gas depletion are not necessarily the same. Our analysis supports the quenching picture where outflows help suppress star formation by disturbing rather than expelling the gas and shed light on possible ongoing activities in similar quenching galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy