SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meilland A.) "

Sökning: WFRF:(Meilland A.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weigelt, G., et al. (författare)
  • VLTI-MATISSE chromatic aperture-synthesis imaging of eta Carinae's stellar wind across the Br alpha line Periastron passage observations in February 2020
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis similar to 15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, eta Car A, is a luminous blue variable (LBV); the secondary, eta Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV eta Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of eta Car's WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Br alpha imaging of eta Car's distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of eta Car A's stellar windin several spectral channels distributed across the Br alpha 4.052 mu m line (spectral resolving power R similar to 960). Our observations were performed close to periastron passage in February 2020 (orbital phase similar to 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (similar to 14 au). The radius of the faintest outer wind regions is similar to 26 mas (similar to 60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 +/- 0.06 mas (6.54 +/- 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models.
  •  
2.
  • Berg, Frenk van den, et al. (författare)
  • Results of the European collaborative project "Product Uniformity Control" to improve the inline sensing of mechanical properties and microstructure of automotive steels
  • 2018
  • Ingår i: e-Journal of Nondestructive Testing (eJNDT). - 1435-4934. ; 23:8
  • Tidskriftsartikel (refereegranskat)abstract
    • A European consortium consisting of four major steel manufacturers and ten academic technology institutes has conducted a research and development project, called “Product Uniformity Control“ (PUC) in the period 2013 to 2017. This project aimed to develop and improve non-destructive (inline) measurement techniques to characterise the (uniformity of the) microstructure of steel strip products. In this project, a multitude of strip steel samples from various stages of production have been collected from the four participating steel manufacturers. The samples have been characterised in various ways, namely on their (1) non-destructive measurement parameters using different techniques suited for inline evaluation, (2) fundamental ultrasonic and electromagnetic properties (wave speed, ultrasonic attenuation, magnetisation loops, coercive field), (3) tensile properties (stress-strain curves) and (4) microstructure (by optical micrographs and EBSD images). The correlations between these different characterisations will be addressed. Besides the experimental characterisation, a strong accent has been on modelling activities: during the project, fundamental models have been developed to describe, starting from 2D and 3D microstructures, the ultrasonic and magnetic properties, which are next used as input to sensor models that predict the output of the inline measurement systems. This contribution presents the recent results of experimental work, which underlines the importance of associated modelling studies for the interpretation of the measurement data for the benefit of inline characterisation of the mechanical properties complementary to traditional destructive tensile testing.
  •  
3.
  • Chiavassa, A., et al. (författare)
  • The extended atmosphere and circumstellar environment of the cool evolved star VX Sagittarii as seen by MATISSE star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. VX Sgr is a cool, evolved, and luminous red star whose stellar parameters are difficult to determine, which affects its classification.Aims. We aim to spatially resolve the photospheric extent as well as the circumstellar environment.Methods. We used interferometric observations obtained with the MATISSE instrument in the L (3-4 mu m), M (4.5-5 mu m), and N (8-13 mu m) bands. We reconstructed monochromatic images using the MIRA software. We used 3D radiation-hydrodynamics simulations carried out with (COBOLD)-B-5 and a uniform disc model to estimate the apparent diameter and interpret the stellar surface structures. Moreover, we employed the radiative transfer codes OPTIM3D and RADMC3D to compute the spectral energy distribution for the L, M, and N bands, respectively.Results. MATISSE observations unveil, for the first time, the morphology of VX Sgr across the L, M, and N bands. The reconstructed images show a complex morphology with brighter areas whose characteristics depend on the wavelength probed. We measured the angular diameter as a function of the wavelength and showed that the photospheric extent in the L and M bands depends on the opacity through the atmosphere. In addition to this, we also concluded that the observed photospheric inhomogeneities can be interpreted as convection-related surface structures. The comparison in the N band yielded a qualitative agreement between the N-band spectrum and simple dust radiative transfer simulations. However, it is not possible to firmly conclude on the interpretation of the current data because of the difficulty in constraing the model parameters using the limited accuracy of our absolute flux calibration.Conclusions. MATISSE observations and the derived reconstructed images unveil the appearance of VX Sgr's stellar surface and circumstellar environment across a very large spectral domain for the first time.
  •  
4.
  • Van Den Berg, F. D., et al. (författare)
  • Product uniformity control - A research collaboration of european steel industries to non-destructive evaluation of microstructure and mechanical properties
  • 2018
  • Ingår i: Stud. Appl. Electromagn. Mech.. - : IOS Press. - 9781614998358 ; 43, s. 120-129
  • Konferensbidrag (refereegranskat)abstract
    • In steel manufacturing, the conventional method to determine the mechanical properties and microstructure is by offline, destructive (lab-)characterisation of sample material that is typically taken from the head or the tail of the coil. Since coils can be up to 7 km long, the samples are not always representative for the main coil body. Also, the time delay (typically a few days) between the actual production and the availability of the characterisation results implies that these results cannot be exploited for real-time adaptation of the process settings. Information about the microstructure and material properties can also be obtained from electromagnetic (EM) and ultrasonic (US) parameters, which can be measured in real-time, non-destructively, and over the full length of the steel strip product. With the aim to improve the consistency in product quality by use of inline EM and US measurements, a European project called "Product Uniformity Control" (PUC) has been set up as a broad collaboration between 4 major European Steel Manufacturers and 10 Universities / Research institutes. Using both numerical simulations and experimental characterisations, we study the inline measured EM and US parameters in regard of the microstructural and mechanical properties. In this way, we aim to establish an improved understanding of their mutual relationships, and to apply this knowledge in existing and new nondestructive evaluation techniques. In this paper, the concerted approach of modelling and experimental validation will be addressed, and results of this work will be shown in combination with inline measured data.
  •  
5.
  • Creevey, O. L., et al. (författare)
  • Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric, spectroscopic, and photometric data
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-poor halo stars are important astrophysical laboratories that allow us to unravel details about many aspects of astrophysics, including the chemical conditions at the formation of our Galaxy, understanding the processes of diffusion in stellar interiors, and determining precise effective temperatures and calibration of colour-effective temperature relations. To address any of these issues the fundamental properties of the stars must first be determined. HD140283 is the closest and brightest metal-poor Population II halo star (distance = 58 pc and V = 7.21), an ideal target that allows us to approach these questions, and one of a list of 34 benchmark stars defined for Gaia astrophysical parameter calibration. In the framework of characterizing these benchmark stars, we determined the fundamental properties of HD140283 (radius, mass, age, and effective temperature) by obtaining new interferometric and spectroscopic measurements and combining them with photometry from the literature. The interferometric measurements were obtained using the visible interferometer VEGA on the CHARA array and we determined a 1D limb-darkened angular diameter of theta(1D) = 0.353 +/- 0.013 milliarcsec. Using photometry from the literature we derived the bolometric flux in two ways: a zero reddening solution (A(V) = 0.0 mag) of F-bol of 3.890 +/- 0.066 x 10(-8) erg s(-1) cm(-2),and a maximum of A(V) = 0.1 mag solution of 4.220 +/- 0.067 x 10(-8) erg s(-1) cm(-2). The interferometric T-eff is thus between 5534 +/- 103 K and 5647 +/- 105 K and its radius is R = 2.21 +/- 0.08 R-circle dot. Spectroscopic measurements of HD140283 were obtained using HARPS, NARVAL, and UVES and a 1D LTE analysis of Ha line wings yielded T-effspec = 5626 +/- 75 K. Using fine-tuned stellar models including diffusion of elements we then determined the mass M and age t of HD140283. Once the metallicity has been fixed, the age of the star depends on M, initial helium abundance Y-i, and mixing-length parameter alpha, only two of which are independent. We derive simple equations to estimate one from the other two. We need to adjust a to much lower values than the solar one (similar to 2) in order to fit the observations, and if A(V) = 0.0 mag then 0.5 <= alpha <= 1. We give an equation to estimate t from M, Y-i (alpha), and A(V). Establishing a reference alpha = 1.00 and adopting Y-i = 0.245 we derive a mass and age of HD140283: M = 0.780 +/- 0.010 M-circle dot and t = 13.7 +/- 0.7 Gyr (A(V) = 0.0 mag), or M = 0.805 +/- 0.010 M-circle dot and t = 12.2 +/- 0.6 Gyr (A(V) = 0.1 mag). Our stellar models yield an initial (interior) metal-hydrogen mass fraction of [Z/X](i) = -1.70 and log g = 3.65 +/- 0.03. Theoretical advances allowing us to impose the mixing-length parameter would greatly improve the redundancy between M, Y-i, and age, while from an observational point of view, accurate determinations of extinction along with asteroseismic observations would provide critical information allowing us to overcome the current limitations in our results.
  •  
6.
  • Van Den Berg, F. D., et al. (författare)
  • In-line Characterisation of Microstructure and Mechanical Properties in the Manufacturing of Steel Strip for the Purpose of Product Uniformity Control
  • 2016
  • Ingår i: DGZfP-Proceedings BB 158. - 9783940283788
  • Konferensbidrag (refereegranskat)abstract
    • The uniformity of the microstructure of steel strip over the entire coil length and between different coils of the same grade is key to stable and consistent material behaviour in steel manufacturers’ proprietary processes, like rolling and levelling, and customers’ processes, like pressing and deep-drawing. In particular for high-strength steels, like dual phase and complex phase steels, the microstructure is very sensitive to processing variations resulting in a potentially larger spread in the mechanical properties of the product. In July 2013, a large European consortium consisting of 15 institutes started an RFCS [1] – funded project called “Product Uniformity Control” (PUC) with the primary objective to achieve enhanced and sustained product uniformity of steel strip by improved interpretation of data from inline measurement methods that aim 2 for real-time and non-destructive characterisation of microstructure and technomechanical parameters. Commonly, these techniques are based on electromagnetic (EM) or ultrasonic (US) measurement principles, which are favoured because of their non-destructive and potentially contact-free nature. To improve the techniques for inline materials characterisation, the PUC consortium takes a systematic approach to investigate the interrelations between mechanical properties -- microstructural parameters -- EM & US properties -- inline measurement thereof. The studies involve dedicated laboratory experiments, modelling of the EM and US properties of steel, modelling of inline measurement setups and statistical analysis of data from inline measurement systems. The synthesis of these activities should result in improved, model-based, calibrations and finally in a broader deployment and integration of the inline material characterisation techniques in steel manufacturing, adding value to the product and enhancing the process efficiency throughout the production chain from hot-rolling to finishing. This paper outlines the project approach, highlights interconnecting modelling and experimental research work, and demonstrates first results. Various contributions being presented at this WCNDT conference originate from the collaborative activities of this PUC project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy