SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Meire Alexander) "

Search: WFRF:(Meire Alexander)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ovaskainen, Otso, et al. (author)
  • Global Spore Sampling Project: A global, standardized dataset of airborne fungal DNA
  • 2024
  • In: Scientific Data. - 2052-4463. ; 11
  • Journal article (peer-reviewed)abstract
    • Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.
  •  
2.
  • Unzué-Belmonte, Dácil, et al. (author)
  • Fire enhances solubility of biogenic silica
  • 2016
  • In: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 572, s. 1289-1296
  • Journal article (peer-reviewed)abstract
    • Changing fire regimes in response to climate change are likely to have significant effects on terrestrial ecosystems and biogeochemical cycles. While effects of fire on some nutrient cycles have been quite well-studied, little attention has been paid to the silicon cycle. We used an alkaline continuous extraction to examine changes in the quantity and characteristics of alkaline extractable Si (AlkExSi) after applying two burning treatments (no heating, 350°C and 550°C) to three types of organic soil material (from spruce forest, beech forest and a commercial peat). The total AlkExSi measured was 25.1±2.1mgg(-1) and 15.4±0.9mgg(-1) for spruce and beech respectively, and 1.2±0.5mgg(-1) for peat. The alkaline extraction parameters confirm a purely biogenic AlkExSi source in untreated spruce and beech organic soil material samples. Organic soil material of beech forest had two biogenic silica pools, differing in reactivity during alkaline extraction. Burning severely alters the alkaline dissolution parameters suggesting a significant crystallization of biogenic Si (BSi) with increased burning severity. Additionally, dissolution experiments carried out in rain water showed that fire increased the solubility of BSi by a factor of 40 and 20 in the case of the spruce and beech organic soil material respectively. The extent of enhanced Si solubility appears to be a trade-off function between organic matter losses and degree of crystallization. The burned soils could provide a strong and immediate Si source for the environment. In situ ecosystem characteristics that affect the uptake-leaching balance will determine the fate of the dissolved Si. Ecosystems low in BSi, like Sphagnum peatland, will not show drastic alteration in the Si cycle due to fire.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view