SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mekarnia Djamel) "

Sökning: WFRF:(Mekarnia Djamel)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hawthorn, F., et al. (författare)
  • TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:3, s. 3649-3668
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∼200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M and a radius of 0.67 ± 0.01 R. We obtain photometric follow-up observations with a variety of facilities, and we use these data sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R super-Earth in a 3.82-d orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R mini-Neptune in an 8.60-d orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M, while TOI-836 c has a mass of 9.6 ± 2.6 M. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 min for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.
  •  
2.
  • Hobson, Melissa J., et al. (författare)
  • TOI-199 b : A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica
  • 2023
  • Ingår i: Astronomical Journal. - 0004-6256. ; 166:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5 hr long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199 b has a 104.854 − 0.002 + 0.001 day period, a mass of 0.17 ± 0.02 M J, and a radius of 0.810 ± 0.005 R J. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations (TTVs), pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the nontransiting companion TOI-199 c, which has a period of 273.69 − 0.22 + 0.26 days and an estimated mass of 0.28 − 0.01 + 0.02 M J . This period places it within the conservative habitable zone.
  •  
3.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
4.
  • Zieba, Sebastian, et al. (författare)
  • The β Pictoris b Hill sphere transit campaign : II.Searching for the signatures of the β Pictoris exoplanets through time delay analysis of the δ Scuti pulsations
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • The β Pictoris system is the closest known stellar system with directly detected gas giant planets, an edge-on circumstellar disc, and evidence of falling sublimating bodies and transiting exocomets. The inner planet, β Pictoris c, has also been indirectly detected with radial velocity (RV) measurements. The star is a known δ Scuti pulsator, and the long-term stability of these pulsations opens up the possibility of indirectly detecting the gas giant planets through time delays of the pulsations due to a varying light travel time. We search for phase shifts in the δ Scuti pulsations consistent with the known planets β Pictoris b and c and carry out an analysis of the stellar pulsations of β Pictoris over a multi-year timescale. We used photometric data collected by the BRITE-Constellation, bRing, ASTEP, and TESS to derive a list of the strongest and most significant δ Scuti pulsations. We carried out an analysis with the open-source python package maelstrom to study the stability of the pulsation modes of β Pictoris in order to determine the long-term trends in the observed pulsations. We did not detect the expected signal for β Pictoris b or β Pictoris c. The expected time delay is 6 s for β Pictoris c and 24 s for β Pictoris b. With simulations, we determined that the photometric noise in all the combined data sets cannot reach the sensitivity needed to detect the expected timing drifts. An analysis of the pulsational modes of β Pictoris using maelstrom showed that the modes themselves drift on the timescale of a year, fundamentally limiting our ability to detect exoplanets around β Pictoris via pulsation timing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy