SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Melack J.M.) "

Sökning: WFRF:(Melack J.M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Downing, J. A., et al. (författare)
  • Global abundance and size distribution of streams and rivers
  • 2012
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 2:4, s. 229-236
  • Tidskriftsartikel (refereegranskat)abstract
    • To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 continents to estimate the fraction of continental area occupied by streams worldwide and corrected remote sensing stream inventories for unresolved small streams. Our estimates of global fluvial area are 485 000 to 662 000 km2 and are +30–300% of published appraisals. Moderately sized rivers (orders 5–9) seem to comprise the greatest global area, with less area covered by low and high order streams, while global stream length, and therefore the riparian interface, is dominated by 1st order streams. Rivers and streams are likely to cover 0.30–0.56% of the land surface and make contributions to global processes and greenhouse gas emissions that may be +20–200% greater than those implied by previous estimates.
  •  
2.
  • Downing, J. A., et al. (författare)
  • The global abundance and size distribution of lakes, ponds, and impoundments
  • 2006
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 51:5, s. 2388-2397
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km(2) in area) and is dominated in area by millions of water bodies smaller than 1 km(2). Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km(2). However, construction of low-tech farm impoundments is estimated to be between 0.1% and 6% of farm area worldwide, dependent upon precipitation, and represents > 77,000 km(2) globally, at present. Overall, about 4.6 million km(2) of the earth's continental "land" surface (> 3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes.
  •  
3.
  • Rudberg, David, et al. (författare)
  • Diel Variability of CO2 Emissions From Northern Lakes
  • 2021
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - Hoboken, United States : John Wiley & Sons. - 2169-8953 .- 2169-8961. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are generally supersaturated in carbon dioxide (CO2) and emitters of CO2 to the atmosphere. However, estimates of CO2 flux ((Formula presented.)) from lakes are seldom based on direct flux measurements and usually do not account for nighttime emissions, yielding risk of biased assessments. Here, we present direct (Formula presented.) measurements from automated floating chambers collected every 2–3 hr and spanning 115 24 hr periods in three boreal lakes during summer stratification and before and after autumn mixing in the most eutrophic lake of these. We observed 40%–67% higher mean (Formula presented.) in daytime during periods of surface water CO2 supersaturation in all lakes. Day-night differences in wind speed were correlated with the day-night (Formula presented.) differences in the two larger lakes, but in the smallest and most wind-sheltered lake peaks of (Formula presented.) coincided with low-winds at night. During stratification in the eutrophic lake, CO2 was near equilibrium and diel variability of (Formula presented.) insignificant, but after autumn mixing (Formula presented.) was high with distinct diel variability making this lake a net CO2 source on an annual basis. We found that extrapolating daytime measurements to 24 hr periods overestimated (Formula presented.) by up to 30%, whereas extrapolating measurements from the stratified period to annual rates in the eutrophic lake underestimated (Formula presented.) by 86%. This shows the importance of accounting for diel and seasonal variability in lake CO2 emission estimates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy