SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Menéndez Hurtado David) "

Sökning: WFRF:(Menéndez Hurtado David)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Henrik, et al. (författare)
  • Towards automated and proactive anomaly detection in a fiber access network
  • 2023
  • Ingår i: Proceedings of 18th Swedish National Computer Networking and Cloud Computing Workshop (SNCNW 2023), Kristianstad, June 14-15, 2023..
  • Konferensbidrag (refereegranskat)abstract
    • Communication networks are vital for society and network availability is therefore crucial. There is a huge potential in using network telemetry data and machine learning algorithms to proactively detect anomalies and remedy problems before they affect the customers. In practice, however, there are many steps on the way to get there. In this paper we present ongoing development work on efficient data collection pipelines, anomaly detection algorithms and analysis of traffic patterns and predictability.
  •  
2.
  • Baldassarre, Federico, et al. (författare)
  • GraphQA: Protein Model Quality Assessment using Graph Convolutional Networks
  • 2020
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811 .- 1460-2059. ; 37:3, s. 360-366
  • Tidskriftsartikel (refereegranskat)abstract
    • MotivationProteins are ubiquitous molecules whose function in biological processes is determined by their 3D structure. Experimental identification of a protein’s structure can be time-consuming, prohibitively expensive, and not always possible. Alternatively, protein folding can be modeled using computational methods, which however are not guaranteed to always produce optimal results.GraphQA is a graph-based method to estimate the quality of protein models, that possesses favorable properties such as representation learning, explicit modeling of both sequential and 3D structure, geometric invariance, and computational efficiency.ResultsGraphQA performs similarly to state-of-the-art methods despite using a relatively low number of input features. In addition, the graph network structure provides an improvement over the architecture used in ProQ4 operating on the same input features. Finally, the individual contributions of GraphQA components are carefully evaluated.Availability and implementationPyTorch implementation, datasets, experiments, and link to an evaluation server are available through this GitHub repository: github.com/baldassarreFe/graphqaSupplementary informationSupplementary material is available at Bioinformatics online.
  •  
3.
  • Cheng, Jianlin, et al. (författare)
  • Estimation of model accuracy in CASP13
  • 2019
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 87:12, s. 1361-1377
  • Tidskriftsartikel (refereegranskat)abstract
    • Methods to reliably estimate the accuracy of 3D models of proteins are both a fundamental part of most protein folding pipelines and important for reliable identification of the best models when multiple pipelines are used. Here, we describe the progress made from CASP12 to CASP13 in the field of estimation of model accuracy (EMA) as seen from the progress of the most successful methods in CASP13. We show small but clear progress, that is, several methods perform better than the best methods from CASP12 when tested on CASP13 EMA targets. Some progress is driven by applying deep learning and residue‐residue contacts to model accuracy prediction. We show that the best EMA methods select better models than the best servers in CASP13, but that there exists a great potential to improve this further. Also, according to the evaluation criteria based on local similarities, such as lDDT and CAD, it is now clear that single model accuracy methods perform relatively better than consensus‐based methods.
  •  
4.
  • Elofsson, Arne, et al. (författare)
  • Methods for estimation of model accuracy in CASP12
  • 2018
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 86:S1, s. 361-373
  • Tidskriftsartikel (refereegranskat)abstract
    • Methods to reliably estimate the quality of 3D models of proteins are essential drivers for the wide adoption and serious acceptance of protein structure predictions by life scientists. In this article, the most successful groups in CASP12 describe their latest methods for estimates of model accuracy (EMA). We show that pure single model accuracy estimation methods have shown clear progress since CASP11; the 3 top methods (MESHI, ProQ3, SVMQA) all perform better than the top method of CASP11 (ProQ2). Although the pure single model accuracy estimation methods outperform quasi-single (ModFOLD6 variations) and consensus methods (Pcons, ModFOLDclust2, Pcomb-domain, and Wallner) in model selection, they are still not as good as those methods in absolute model quality estimation and predictions of local quality. Finally, we show that when using contact-based model quality measures (CAD, lDDT) the single model quality methods perform relatively better.
  •  
5.
  • Lamb, John, et al. (författare)
  • PconsFam : An Interactive Database of Structure Predictions of Pfam Families
  • 2019
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 431:13, s. 2442-2448
  • Tidskriftsartikel (refereegranskat)abstract
    • At present, about half of the protein domain families lack a structural representative. However, in the last decade, predicting contact maps and using these to model the tertiary structure for these protein families have become an alternative approach to gain structural insight. At present, reliable models for several hundreds of protein families have been created using this approach. To increase the use of this approach, we present PconsFam, which is an intuitive and interactive database for predicted contact maps and tertiary structure models of the entire Pfam database. By modeling all possible families, both with and without a representative structure, using the PconsFold2 pipeline, and running quality assessment estimator on the models, we predict an estimation for how confident the contact maps and structures are for each family.
  •  
6.
  • Menéndez Hurtado, David, 1990-, et al. (författare)
  • A novel training procedure to train deep networks in the assessment of the quality of protein models
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Motivation: Proteins fold into complex structures that are crucial for their biological functions. Experimental determination of protein structures iscostly and therefore limited to a small fraction of all known proteins. Hence,different computational structure prediction methods are necessary for themodelling of the vast majority of all proteins. In most structure predictionpipelines, the last step is to select the best available model and to estimateits accuracy. This model quality estimation problem has been growing inimportance during the last decade, and progress is believed to be importantfor large scale modelling of proteins. Current machine learning models trained to estimate the protein modelquality suffer from biases in the training set: multiple models of only a fewtargets, generated by a few methods.Results: We propose a new methodology to train deep networks that leveragesthe structure of the problem and takes advantage of some of this redundan-cies. We demonstrate its viability by reaching results comparable with anotherstate-of-the-art method, ProQ3D, trained and evaluated on the same datasets,but employing only a small subset of the input features.The proposed training strategy is applicable to other input features anddatasets, and thus can be applied to other programs.Availability: The code is freely available for download at: github.com/ElofssonLab/ProQ4 and runs with minimal requirements: requires only one multiplesequence alignment and a collection of models and depends only on Python3, hdf5, a deep learning framework compatible with Keras, and dssp.Contact: arne@bioinfo.se
  •  
7.
  • Menéndez Hurtado, David, 1990- (författare)
  • Structured Learning for Structural Bioinformatics : Applications of Deep Learning to Protein Structure Prediction
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are the basic molecular machines of the cell, performing a broad range of tasks, from structural support to catalysisof chemical reactions. Their function is determined by their 3D structure, which in turn is dictated by the order of their components, the amino acids.This thesis is dedicated to applications of machine learning to the problems of contact prediction, ab-initio, and model quality assessment. In particular, my research has been focused on developing methods that are both effective, and easy to use.In the first paper, we improved the already state-of-the-art model quality assessment (MQA) program ProQ3 replacing the underlying machine learning algorithm from svm to Deep Learning, baptised ProQ3D. The correlation between predicted and true scores was improved from 0.85 to 0.90, using the same training data and features.The second paper joined several programs into a single pipeline for ab-initio structure prediction: contact prediction,folding, and model selection. We attempted to predict the structures of all 6379 PFAM families with unknown structure, ofwhich 558 we believe to be accurate. Of these, 415 had not been reported before.The third paper uses advances in machine learning to build a contact predictor, PconsC4, that is fast and easy to deployin large-scale studies, since it requires a single Multiple Sequence Alignment (MSA), and no external dependencies. The predictions are state-of-the-art, yielding a 12% improvement in precision over PconsC3, and 244 times faster.With ProQ4, in the fourth paper, we introduce a novel way of training deep networks for MQA in a way that minimises the bias of the training data, and emphasises model ranking, and demonstrate its viability with a minimal description ofthe protein. The ranking correlation was improved with respect to ProQ3D from 0.82 to 0.90.Lastly, in the fifth paper, weshow the results of ProQ3D and ProQ4 in a completely blind test: CASP13.
  •  
8.
  • Michel, Mirco, et al. (författare)
  • Large-scale structure prediction by improved contact predictions and model quality assessment
  • 2017
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811 .- 1460-2059. ; 33:14, s. 123-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Accurate contact predictions can be used for predicting the structure of proteins. Until recently these methods were limited to very big protein families, decreasing their utility. However, recent progress by combining direct coupling analysis with machine learning methods has made it possible to predict accurate contact maps for smaller families. To what extent these predictions can be used to produce accurate models of the families is not known. Results: We present the PconsFold2 pipeline that uses contact predictions from PconsC3, the CONFOLD folding algorithm and model quality estimations to predict the structure of a protein. We show that the model quality estimation significantly increases the number of models that reliably can be identified. Finally, we apply PconsFold2 to 6379 Pfam families of unknown structure and find that PconsFold2 can, with an estimated 90% specificity, predict the structure of up to 558 Pfam families of unknown structure. Out of these 415 have not been reported before. Availability: Datasets as well as models of all the 558 Pfam families are available at http://c3.pcons.net. All programs used here are freely available.
  •  
9.
  • Michel, Mirco, et al. (författare)
  • PconsC4: fast, accurate and hassle-free contact predictions
  • 2019
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811 .- 1460-2059. ; 35:15, s. 2677-2679
  • Tidskriftsartikel (refereegranskat)abstract
    • MotivationResidue contact prediction was revolutionized recently by the introduction of direct coupling analysis (DCA). Further improvements, in particular for small families, have been obtained by the combination of DCA and deep learning methods. However, existing deep learning contact prediction methods often rely on a number of external programs and are therefore computationally expensive.ResultsHere, we introduce a novel contact predictor, PconsC4, which performs on par with state of the art methods. PconsC4 is heavily optimized, does not use any external programs and therefore is significantly faster and easier to use than other methods.Availability and implementationPconsC4 is freely available under the GPL license from https://github.com/ElofssonLab/PconsC4. Installation is easy using the pip command and works on any system with Python 3.5 or later and a GCC compiler. It does not require a GPU nor special hardware.Supplementary informationSupplementary data are available at Bioinformatics online.
  •  
10.
  • Michel, Mirco, et al. (författare)
  • Predicting accurate contacts in thousands of Pfam domain families using PconsC3
  • 2017
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 33:18, s. 2859-2866
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: A few years ago it was shown that by using a maximum entropy approach to describe couplings between columns in a multiple sequence alignment it is possible to significantly increase the accuracy of residue contact predictions. For very large protein families with more than 1000 effective sequences the accuracy is sufficient to produce accurate models of proteins as well as complexes. Today, for about half of all Pfam domain families no structure is known, but unfortunately most of these families have at most a few hundred members, i.e. are too small for such contact prediction methods. Results: To extend accurate contact predictions to the thousands of smaller protein families we present PconsC3, a fast and improved method for protein contact predictions that can be used for families with even 100 effective sequence members. PconsC3 outperforms direct coupling analysis (DCA) methods significantly independent on family size, secondary structure content, contact range, or the number of selected contacts. Availability and implementation: PconsC3 is available as a web server and downloadable version at http://c3.pcons.net. The downloadable version is free for all to use and licensed under the GNU General Public License, version 2. At this site contact predictions for most Pfam families are also available. We do estimate that more than 4000 contact maps for Pfam families of unknown structure have more than 50% of the top-ranked contacts predicted correctly. Contact: arne@bioinfo.se Supplementary information: Supplementary data are available at Bioinformatics online.
  •  
11.
  • Uziela, Karolis, et al. (författare)
  • Improved protein model quality assessments by changing the target function
  • 2018
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 86:6, s. 654-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates.
  •  
12.
  • Uziela, Karolis, 1987-, et al. (författare)
  • ProQ3D : improved model quality assessments using deep learning
  • 2017
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 33:10, s. 1578-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein quality assessment is a long-standing problem in bioinformatics. For more than a decade we have developed state-of-art predictors by carefully selecting and optimising inputs to a machine learning method. The correlation has increased from 0.60 in ProQ to 0.81 in ProQ2 and 0.85 in ProQ3 mainly by adding a large set of carefully tuned descriptions of a protein. Here, we show that a substantial improvement can be obtained using exactly the same inputs as in ProQ2 or ProQ3 but replacing the support vector machine by a deep neural network. This improves the Pearson correlation to 0.90 (0.85 using ProQ2 input features).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy