SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Merino Serrais Paula) "

Sökning: WFRF:(Merino Serrais Paula)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bulovaite, Edita, et al. (författare)
  • A brain atlas of synapse protein lifetime across the mouse lifespan
  • 2022
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 110:24, s. 4057-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
  •  
2.
  • Latorre-Leal, María, et al. (författare)
  • CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice
  • 2024
  • Ingår i: Science advances. - 2375-2548. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
  •  
3.
  • Mijalkov, Mite, et al. (författare)
  • Dendritic spines are lost in clusters in Alzheimer’s disease
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a deterioration of neuronal connectivity. The pathological accumulation of tau in neurons is one of the hallmarks of AD and has been connected to the loss of dendritic spines of pyramidal cells, which are the major targets of cortical excitatory synapses and key elements in memory storage. However, the detailed mechanisms underlying the loss of dendritic spines in individuals with AD are still unclear. Here, we used graph-theory approaches to compare the distribution of dendritic spines from neurons with and without tau pathology of AD individuals. We found that the presence of tau pathology determines the loss of dendritic spines in clusters, ruling out alternative models where spine loss occurs at random locations. Since memory storage has been associated with synaptic clusters, the present results provide a new insight into the mechanisms by which tau drives synaptic damage in AD, paving the way to memory deficits through alterations of spine organization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy