SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meroni Marica) "

Sökning: WFRF:(Meroni Marica)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Anstee, Quentin M., et al. (författare)
  • Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically-characterised cohort
  • 2020
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:3, s. 505-515
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most GWAS studies have adopted radiologically assessed hepatic triglyceride content as reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a genome-wide association study (GWAS) encompassing the full spectrum of histologically characterized NAFLD.METHODS: The GWAS involved 1483 European NAFLD cases and 17781 genetically-matched population controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance.RESULTS: Case-control analysis identified signals showing p-values ≤ 5 x 10-8 at four locations (chromosome (chr) 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with two other signals with p<1 x10-7 (chr1 near LEPR and chr8 near IDO2/TC1). Case-only analysis of quantitative traits steatosis, disease activity score, NAS and fibrosis showed that the PNPLA3 signal (rs738409) was genome-wide significantly associated with steatosis, fibrosis and NAS score and identified a new signal (PYGO1 rs62021874) with close to genome-wide significance for steatosis (p=8.2 x 10-8). Subgroup case-control analysis for NASH confirmed the PNPLA3 signal. The chr1 LEPR SNP also showed genome-wide significance for this phenotype. Considering the subgroup with advanced fibrosis (≥F3), the signals on chromosomes 2, 19 and 22 remained genome-wide significant. With the exception of GCKR/C2ORF16, the genome-wide significant signals replicated.CONCLUSIONS: This study confirms PNPLA3 as a risk factor for the full histological spectrum of NAFLD at genome-wide significance levels, with important contributions from TM6SF2 and HSD17B13. PYGO1 is a novel steatosis modifier, suggesting relevance of Wnt signalling pathways in NAFLD pathogenesis.
  •  
4.
  • Bianco, Cristina, et al. (författare)
  • Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores.
  • 2021
  • Ingår i: Journal of hepatology. - : Elsevier BV. - 1600-0641 .- 0168-8278. ; 74:4, s. 775-782
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) risk stratification in individuals with dysmetabolism is a major unmet need. Genetic predisposition contributes to non-alcoholic fatty liver disease (NAFLD). We aimed to exploit robust polygenic risk scores (PRS) that can be evaluated in the clinic to gain insight into the causal relationship between NAFLD and HCC, and to improve HCC risk stratification.We examined at-risk individuals (NAFLD cohort, n=2,566; 226 with HCC; and a replication cohort of 427 German patients with NAFLD) and the general population (UK Biobank [UKBB] cohort, n=364,048; 202 with HCC). Variants in PNPLA3-TM6SF2-GCKR-MBOAT7 were combined in a hepatic fat PRS (PRS-HFC), and then adjusted for HSD17B13 (PRS-5).In the NAFLD cohort, the adjusted impact of genetic risk variants on HCC was proportional to the predisposition to fatty liver (p=0.002) with some heterogeneity in the effect. PRS predicted HCC more robustly than single variants (p<10-13). The association between PRS and HCC was mainly mediated through severe fibrosis, but was independent of fibrosis in clinically relevant subgroups, and was also observed in those without severe fibrosis (p<0.05). In the UKBB cohort, PRS predicted HCC independently of classical risk factors and cirrhosis (p<10-7). In the NAFLD cohort, we identified high PRS cut-offs (≥0.532/0.495 for PRS-HFC/PRS-5) that in the UKBB cohort detected HCC with ∼90% specificity but limited sensitivity; PRS predicted HCC both in individuals with (p<10-5) and without cirrhosis (p<0.05).Our results are consistent with a causal relationship between hepatic fat and HCC. PRS improved the accuracy to detect HCC and may help stratify HCC risk in individuals with dysmetabolism, including those without severe liver fibrosis. Further studies are needed to validate our findings.
  •  
5.
  • Donati, Benedetta, et al. (författare)
  • The rs2294918 E434K variant modulates PNPLA3 expression and liver damage.
  • 2016
  • Ingår i: Hepatology (Baltimore, Md.). - : Ovid Technologies (Wolters Kluwer Health). - 1527-3350 .- 0270-9139. ; 63:3, s. 787-798
  • Tidskriftsartikel (refereegranskat)abstract
    • The PNPLA3 rs738409 polymorphism (I148M) is a major determinant of hepatic fat and predisposes to the full spectrum of liver damage in nonalcoholic fatty liver disease (NAFLD). Aim of this study was to evaluate whether additional PNPLA3 coding variants contribute to NAFLD susceptibility, first in individuals with contrasting phenotypes (with early onset NAFLD vs. very low aminotransferases), and then in a large validation cohort. Rare PNPLA3 variants were not detected by sequencing coding regions and intron-exon boundaries either in 142 patients with early-onset NAFLD, nor in 100 healthy individuals with ALT <22/20 IU/ml. Besides rs738409 I148M, the rs2294918 G>A polymorphism (E434K sequence variant) was over-represented in NAFLD (adjusted p=0.01). In 1447 subjects with and without NAFLD, the 148M-434E (p<0.0001), but not the 148M-434K haplotype (p>0.9), was associated with histological NAFLD and steatohepatitis. Both the I148M (p=0.0002) and E434K variants (p=0.044) were associated with serum ALT levels, by interacting each other, in that the 434K hampered the association with liver damage of the 148M allele (p=0.006). The E434K variant did not affect PNPLA3 enzymatic activity, but carriers of the rs2294918 A allele (434K) displayed lower hepatic PNPLA3 mRNA and protein levels (p<0.05).
  •  
6.
  • Dongiovanni, Paola, et al. (författare)
  • PCSK7 gene variation bridges atherogenic dyslipidemia with hepatic inflammation in NAFLD patients.
  • 2019
  • Ingår i: Journal of lipid research. - 1539-7262. ; 60:June, s. 1144-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • Dyslipidemia and altered iron metabolism are typical features of non-alcoholic fatty liver disease (NAFLD). Proprotein Convertase Subtilisin/Kexin Type 7 (PCSK7) gene variation has been associated with circulating lipids and liver damage during iron overload. Aim of this study was to examine the impact of the PCSK7 rs236918 variant on NAFLD-related traits in 1,801 individuals from the Liver Biopsy Cohort (LBC), 500,000 from the UK Biobank Cohort (UKBBC), and 4,580 from the Dallas Heart Study (DHS). The minor PCSK7 rs236918 C allele was associated with higher triglycerides, aminotransferases and hepatic inflammation in the LBC (p<0.05) and with hypercholesterolemia and liver disease in the UKBBC. In the DHS, PCSK7 missense variants were associated with circulating lipids. PCSK7 was expressed in hepatocytes and its hepatic expression correlated with that of lipogenic genes (p<0.05). The rs236918 C allele was associated with upregulation of a new 'intra-PCSK7' lnc-RNA predicted to interact with the protein, higher hepatic and circulating PCSK7 protein (p<0.01), and the latter correlated with triglycerides (p=0.04). In HepG2, PCSK7 deletion reduced lipogenesis, fat accumulation, inflammation, TGFB pathway activation and fibrogenesis. In conclusion, PCSK7 gene variation is associated with dyslipidemia and more severe liver disease in high risk individuals, likely by modulating PCSK7 expression/activity.
  •  
7.
  • Dongiovanni, Paola, et al. (författare)
  • Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease.
  • 2018
  • Ingår i: Hepatology communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 2:6, s. 666-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver damage and has a strong genetic component. The rs4841132 G>A variant, modulating the expression of protein phosphatase 1 regulatory subunit 3B (PPP1R3B), which is involved in glycogen synthesis, has been reported to reduce the risk of NAFLD but at the same time may favor liver disease by facilitating glycogen accumulation. The aim of this study was to assess the impact of rs4841132 on development of histologic steatosis and fibrosis in 1,388 European individuals in a liver biopsy cohort, on NAFLD hepatocellular carcinoma in a cross-sectional Italian cohort (n = 132 cases), and on liver disease at the population level in the United Kingdom Biobank cohort. We investigated the underlying mechanism by examining the impact of the variant on gene expression profiles. In the liver biopsy cohort, the rs4841132 minor A allele was associated with protection against steatosis (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.42-0.95; P = 0.03) and clinically significant fibrosis (OR, 0.35; 95% CI, 0.14-0.87; P = 0.02) and with reduced circulating cholesterol (P = 0.02). This translated into protection against hepatocellular carcinoma development (OR, 0.22; 95% CI, 0.07-0.70; P = 0.01). At the population level, the rs4841132 variation was not associated with nonalcoholic or nonviral diseases of the liver but was associated with lower cholesterol (P = 1.7 × 10-8). In individuals with obesity, the A allele protecting against steatosis was associated with increased PPP1R3B messenger RNA expression and activation of lipid oxidation and with down-regulation of pathways related to lipid metabolism, inflammation, and cell cycle. Conclusion: The rs4841132 A allele is associated with protection against hepatic steatosis and fibrosis in individuals at high risk of NAFLD but not in the general population and against dyslipidemia. The mechanism may be related to modulation of PPP1R3B expression and hepatic lipid metabolism. (Hepatology Communications 2018;2:666-675).
  •  
8.
  • Mancina, Rosellina Margherita, et al. (författare)
  • The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent.
  • 2016
  • Ingår i: Gastroenterology. - : Elsevier BV. - 1528-0012 .- 0016-5085. ; 150:5, s. 1219-1230
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver damage and is characterized by steatosis. Genetic factors increase risk for progressive NAFLD. A genome-wide association study showed that the rs641738 C>T variant in the locus that contains the membrane bound O-acyltransferase domain-containing 7 gene (MBOAT7, also called LPIAT1) and transmembrane channel-like 4 gene (TMC4) increased the risk for cirrhosis in alcohol abusers. We investigated whether the MBOAT7-TMC4 is a susceptibility locus for the development and progression of NAFLD.
  •  
9.
  • Meroni, Marica, et al. (författare)
  • Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes.
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 52
  • Tidskriftsartikel (refereegranskat)abstract
    • Naturally occurring variation in Membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), encoding for an enzyme involved in phosphatidylinositol acyl-chain remodelling, has been associated with fatty liver and hepatic disorders. Here, we examined the relationship between hepatic Mboat7 down-regulation and fat accumulation.Hepatic MBOAT7 expression was surveyed in 119 obese individuals and in experimental models. MBOAT7 was acutely silenced by antisense oligonucleotides in C57Bl/6 mice, and by CRISPR/Cas9 in HepG2 hepatocytes.In obese individuals, hepatic MBOAT7 mRNA decreased from normal liver to steatohepatitis, independently of diabetes, inflammation and MBOAT7 genotype. Hepatic MBOAT7 levels were reduced in murine models of fatty liver, and by hyper-insulinemia. In wild-type mice, Mboat7 was down-regulated by refeeding and insulin, concomitantly with insulin signalling activation. Acute hepatic Mboat7 silencing promoted hepatic steatosis in vivo and enhanced expression of fatty acid transporter Fatp1. MBOAT7 deletion in hepatocytes reduced the incorporation of arachidonic acid into phosphatidylinositol, consistently with decreased enzymatic activity, determining the accumulation of saturated triglycerides, enhanced lipogenesis and FATP1 expression, while FATP1 deletion rescued the phenotype.MBOAT7 down-regulation by hyper-insulinemia contributes to hepatic fat accumulation, impairing phosphatidylinositol remodelling and up-regulating FATP1.LV was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016-02,364,358, Ricerca corrente Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; LV and AG received funding from the European Union Programme Horizon 2020 (No. 777,377) for the project LITMUS-"Liver Investigation: Testing Marker Utility in Steatohepatitis". MM was supported by Fondazione Italiana per lo Studio del Fegato (AISF) 'Mario Coppo' fellowship.
  •  
10.
  • Pelusi, Serena, et al. (författare)
  • Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease.
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a rising cause of hepatocellular carcinoma (HCC). We examined whether inherited pathogenic variants in candidate genes (n=181) were enriched in patients with NAFLD-HCC. To this end, we resequenced peripheral blood DNA of 142 NAFLD-HCC, 59 NAFLD with advanced fibrosis, and 50 controls, and considered 404 healthy individuals from 1000G. Pathogenic variants were defined according to ClinVar, likely pathogenic as rare variants predicted to alter protein activity. In NAFLD-HCC patients, we detected an enrichment in pathogenic (p=0.024), and likely pathogenic variants (p=1.9*10-6), particularly in APOB (p=0.047). APOB variants were associated with lower circulating triglycerides and higher HDL cholesterol (p<0.01). A genetic risk score predicted NAFLD-HCC (OR 4.96, 3.29-7.55; p=5.1*10-16), outperforming the diagnostic accuracy of common genetic risk variants, and of clinical risk factors (p<0.05). In conclusion, rare pathogenic variants in genes involved in liver disease and cancer predisposition are associated with NAFLD-HCC development.
  •  
11.
  • Pingitore, Piero, 1986, et al. (författare)
  • PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis.
  • 2016
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:23, s. 5212-5222
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown.We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis.Here we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism.In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodeling.
  •  
12.
  • Pipitone, Rosaria M., et al. (författare)
  • Programmed cell death 1 genetic variant and liver damage in nonalcoholic fatty liver disease
  • 2023
  • Ingår i: Liver International. - 1478-3223 .- 1478-3231. ; 43:8, s. 1761-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Programmed cell death 1/programmed cell death-ligand 1 (PD-1/PDL-1) axis has been reported to modulate liver inflammation and progression to hepatocellular carcinoma (HCC) in patients with nonalcoholic fatty liver disease (NAFLD). Here, we examined whether the PDCD1 variation is associated with NAFLD severity in individuals with liver biopsy. Methods: We examined the impact of PDCD1 gene variants on HCC, as robust severe liver disease phenotype in UK Biobank participants. The strongest genetic association with the rs13023138 G>C variation was subsequently tested for association with liver damage in 2889 individuals who underwent liver biopsy for suspected nonalcoholic steatohepatitis (NASH). Hepatic transcriptome was examined by RNA-Seq in a subset of NAFLD individuals (n = 121). Transcriptomic and deconvolution analyses were performed to identify biological pathways modulated by the risk allele. Results: The rs13023138 C>G showed the most robust association with HCC in UK Biobank (p = 5.28E-4, OR = 1.32, 95% CI [1.1, 1.5]). In the liver biopsy cohort, rs13023138 G allele was independently associated with severe steatosis (OR 1.17, 95% CI 1.02-1.34; p =.01), NASH (OR 1.22, 95% CI 1.09-1.37; p <.001) and advanced fibrosis (OR 1.26, 95% CI 1.06-1.50; p =.007). At deconvolution analysis, rs13023138 G>C allele was linked to higher hepatic representation of M1 macrophages, paralleled by upregulation of pathways related to inflammation and higher expression of CXCR6. Conclusions: The PDCD1 rs13023138 G allele was associated with HCC development in the general population and with liver disease severity in patients at high risk of NASH.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Meroni, Marica (12)
Valenti, Luca (11)
Petta, Salvatore (10)
Romeo, Stefano, 1976 (9)
Dongiovanni, Paola (8)
Bugianesi, Elisabett ... (6)
visa fler...
Pelusi, Serena (6)
Mancina, Rosellina M ... (5)
Anstee, Quentin M. (4)
Prati, Daniele (4)
Baselli, Guido (4)
Fargion, Silvia (4)
Bedossa, Pierre (3)
Ekstedt, Mattias (3)
Kechagias, Stergios (3)
Pihlajamäki, Jussi (3)
Aithal, Guruprasad P ... (3)
Daly, Ann K. (3)
Darlay, Rebecca (3)
Cockell, Simon (3)
Govaere, Olivier (3)
Tiniakos, Dina (3)
Burt, Alastair D. (3)
Palmer, Jeremy (3)
Liu, Yang-Lin (3)
Allison, Michael (3)
Vacca, Michele (3)
Dufour, Jean-Francoi ... (3)
Invernizzi, Pietro (3)
Francque, Sven (3)
Clement, Karine (3)
Ratziu, Vlad (3)
Day, Christopher P. (3)
Cordell, Heather J. (3)
Fracanzani, Anna Lud ... (3)
Miele, Luca (3)
Fracanzani, Anna L (3)
Soardo, Giorgio (3)
Motta, Benedetta Mar ... (3)
Pingitore, Piero, 19 ... (3)
Yki-Järvinen, Hannel ... (2)
Yki-Jarvinen, Hannel ... (2)
Wiklund, Olov, 1943 (2)
Vespasiani-Gentilucc ... (2)
Spagnuolo, Rocco (2)
Alisi, Anna (2)
Xing, Chao (2)
Männistö, Ville (2)
Pietrelli, Alessandr ... (2)
Grimaudo, Stefania (2)
visa färre...
Lärosäte
Göteborgs universitet (9)
Linköpings universitet (3)
Örebro universitet (1)
Lunds universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy