SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mertens Florent) "

Sökning: WFRF:(Mertens Florent)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, Anshuman, et al. (författare)
  • 21-cm signal from the Epoch of Reionization : a machine learning upgrade to foreground removal with Gaussian process regression
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 527:3, s. 7835-7846
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, a Gaussian process regression (GPR)-based framework has been developed for foreground mitigation from data collected by the LOw-Frequency ARray (LOFAR), to measure the 21-cm signal power spectrum from the Epoch of Reionization (EoR) and cosmic dawn. However, it has been noted that through this method there can be a significant amount of signal loss if the EoR signal covariance is misestimated. To obtain better covariance models, we propose to use a kernel trained on the grizzly simulations using a Variational Auto-Encoder (VAE)-based algorithm. In this work, we explore the abilities of this machine learning-based kernel (VAE kernel) used with GPR, by testing it on mock signals from a variety of simulations, exploring noise levels corresponding to ≈10 nights (≈141 h) and ≈100 nights (≈1410 h) of observations with LOFAR. Our work suggests the possibility of successful extraction of the 21-cm signal within 2σ uncertainty in most cases using the VAE kernel, with better recovery of both shape and power than with previously used covariance models. We also explore the role of the excess noise component identified in past applications of GPR and additionally analyse the possibility of redshift dependence on the performance of the VAE kernel. The latter allows us to prepare for future LOFAR observations at a range of redshifts, as well as compare with results from other telescopes.
  •  
2.
  • Bianco, Michele, et al. (författare)
  • Deep learning approach for identification of H II regions during reionization in 21-cm observations - II. Foreground contamination
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 528:3, s. 5212-5230
  • Tidskriftsartikel (refereegranskat)abstract
    • The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with AUC = 95 is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with V-ion > (10cmpc)(3 )at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources.
  •  
3.
  • Greig, Bradley, et al. (författare)
  • Interpreting LOFAR 21-cm signal upper limits at z ≈ 9.1 in the context of high-z galaxy and reionization observations
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the latest upper limits on the 21-cm power spectrum at z approximate to 9.1 from the Low Frequency Array (LOFAR), we explore the regions of parameter space which are inconsistent with the data. We use 21CMMC, a Monte Carlo Markov chain sampler of 21CMFAST which directly forward models the three dimensional (3D) cosmic 21-cm signal in a fully Bayesian framework. We use the astrophysical parametrization from 21CMFAST, which includes mass-dependent star formation rates and ionizing escape fractions as well as soft-band X-ray luminosities to place limits on the properties of the high-z galaxies. Further, we connect the disfavoured regions of parameter space with existing observational constraints on the Epoch of Reionization such as ultra-violet (UV) luminosity functions, background UV photoionization rate, intergalactic medium (IGM) neutral fraction, and the electron scattering optical depth. We find that all models exceeding the 21-cm signal limits set by LOFAR at z approximate to 9.1 are excluded at greater than or similar to 2 sigma by other probes. Finally, we place limits on the IGM spin temperature from LOFAR, disfavouring at 95 per cent confidence spin temperatures below similar to 2.6 K across an IGM neutral fraction range of 0.15 less than or similar to (x) over bar (HI) less than or similar to 0.6. Note, these limits are only obtained from 141 h of data in a single redshift bin. With tighter upper limits, across multiple redshift bins expected in the near future from LOFAR, more viable models will be ruled out. Our approach demonstrates the potential of forward modelling tools such as 21CMMC in combining 21-cm observations with other high-z probes to constrain the astrophysics of galaxies.
  •  
4.
  • Koopmans, Léon V. E., et al. (författare)
  • Peering into the dark (ages) with low-frequency space interferometers : Using the 21-cm signal of neutral hydrogen from the infant universe to probe fundamental (Astro)physics
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51, s. 1641-1676
  • Tidskriftsartikel (refereegranskat)abstract
    • The Dark Ages and Cosmic Dawn are largely unexplored windows on the infant Universe (z ~ 200–10). Observations of the redshifted 21-cm line of neutral hydrogen can provide valuable new insight into fundamental physics and astrophysics during these eras that no other probe can provide, and drives the design of many future ground-based instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Array (HERA). We review progress in the field of high-redshift 21-cm Cosmology, in particular focussing on what questions can be addressed by probing the Dark Ages at z > 30. We conclude that only a space- or lunar-based radio telescope, shielded from the Earth’s radio-frequency interference (RFI) signals and its ionosphere, enable the 21-cm signal from the Dark Ages to be detected. We suggest a generic mission design concept, CoDEX, that will enable this in the coming decades.
  •  
5.
  • Kovalchik, Stephanie A, et al. (författare)
  • Absolute Risk Prediction of Second Primary Thyroid Cancer Among 5-Year Survivors of Childhood Cancer.
  • 2012
  • Ingår i: Journal of Clinical Oncology. - 1527-7755.
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSEWe developed three absolute risk models for second primary thyroid cancer to assist with long-term clinical monitoring of childhood cancer survivors. PATIENTS AND METHODSWe used data from the Childhood Cancer Survivor Study (CCSS) and two nested case-control studies (Nordic CCSS; Late Effects Study Group). Model M1 included self-reported risk factors, model M2 added basic radiation and chemotherapy treatment information abstracted from medical records, and model M3 refined M2 by incorporating reconstructed radiation absorbed dose to the thyroid. All models were validated in an independent cohort of French childhood cancer survivors.ResultsM1 included birth year, initial cancer type, age at diagnosis, sex, and past thyroid nodule diagnosis. M2 added radiation (yes/no), radiation to the neck (yes/no), and alkylating agent (yes/no). Past thyroid nodule was consistently the strongest risk factor (M1 relative risk [RR ], 10.8; M2 RR, 6.8; M3 RR, 8.2). In the validation cohort, 20-year absolute risk predictions for second primary thyroid cancer ranged from 0.04% to 7.4% for M2. Expected events agreed well with observed events for each model, indicating good calibration. All models had good discriminatory ability (M1 area under the receiver operating characteristics curve [AUC ], 0.71; 95% CI, 0.64 to 0.77; M2 AUC, 0.80; 95% CI, 0.73 to 0.86; M3 AUC, 0.75; 95% CI, 0.69 to 0.82). CONCLUSIONWe developed and validated three absolute risk models for second primary thyroid cancer. Model M2, with basic prior treatment information, could be useful for monitoring thyroid cancer risk in childhood cancer survivors.
  •  
6.
  • Nair, Dhanya G., et al. (författare)
  • Global millimeter VLBI array survey of ultracompact extragalactic radio sources at 86 GHz
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Forskningsöversikt (refereegranskat)abstract
    • Context. Very long baseline interferometry (VLBI) observations at 86 GHz (wavelength, λ = 3 mm) reach a resolution of about 50 μas, probing the collimation and acceleration regions of relativistic outflows in active galactic nuclei (AGN). The physical conditions in these regions can be studied by performing 86 GHz VLBI surveys of representative samples of compact extragalactic radio sources. Aims. To extend the statistical studies of compact extragalactic jets, a large global 86 GHz VLBI survey of 162 compact radio sources was conducted in 2010-2011 using the Global Millimeter VLBI Array (GMVA). Methods. The survey observations were made in a snapshot mode, with up to five scans per target spread over a range of hour angles in order to optimize the visibility coverage. The survey data attained a typical baseline sensitivity of 0.1 Jy and a typical image sensitivity of 5 mJy beam-1, providing successful detections and images for all of the survey targets. For 138 objects, the survey provides the first ever VLBI images made at 86 GHz. Gaussian model fitting of the visibility data was applied to represent the structure of the observed sources and to estimate the flux densities and sizes of distinct emitting regions (components) in their jets. These estimates were used for calculating the brightness temperature (Tb) at the jet base (core) and in one or more moving regions (jet components) downstream from the core. These model-fit-based estimates of Tb were compared to the estimates of brightness temperature limits made directly from the visibility data, demonstrating a good agreement between the two methods. Results. The apparent brightness temperature estimates for the jet cores in our sample range from 2.5 × 109 K to 1.3 × 1012 K, with the mean value of 1.8 × 1011 K. The apparent brightness temperature estimates for the inner jet components in our sample range from 7.0 × 107 K to 4.0 × 1011 K. A simple population model with a single intrinsic value of brightness temperature, T0, is applied to reproduce the observed distribution. It yields T0 = (3.77-0.14+0.10) × 1011 K for the jet cores, implying that the inverse Compton losses dominate the emission. In the nearest jet components, T0 = (1.42-0.19+0.16) × 1011 K is found, which is slightly higher than the equipartition limit of ∼5 × 1010 K expected for these jet regions. For objects with sufficient structural detail detected, the adiabatic energy losses are shown to dominate the observed changes of brightness temperature along the jet.
  •  
7.
  • Shaw, Abinash Kumar, et al. (författare)
  • Studying the multifrequency angular power spectrum of the cosmic dawn 21-cm signal
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:2, s. 2188-2206
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-cone (LC) anisotropy arises due to cosmic evolution of the cosmic dawn (CD) 21-cm signal along the line-of-sight (LoS) axis of the observation volume. The LC effect makes the signal statistically non-ergodic along the LoS axis. The multifrequency angular power spectrum (MAPS) provides an unbiased alternative to the popular three-dimensional (3D) power spectrum as it does not assume statistical ergodicity along every direction in the signal volume. Unlike the 3D power spectrum which mixes the cosmic evolution of the 21-cm signal along the LoS k modes, MAPS keeps the evolution information disentangled. Here, we first study the impact of different underlying physical processes during CD on the behaviour of the 21-cm MAPS using simulations of various different scenarios and models. We also make error predictions in 21-cm MAPS measurements considering only the system noise and cosmic variance for mock observations of Hydrogen Epoch of Reionization Array (HERA), NenuFAR, and SKA-Low. We find that 100 h of HERA observations will be able to measure 21-cm MAPS at >= 3 sigma for <= 1000 with 0. 1 MHz channel-width. The better sensitivity of SKA-Low allows reaching this sensitivity up to <= 3000. Note that due to the difference in the frequency coverage of the various experiments, the CD-epoch of reionization model considered for NenuFAR is different than those used for the HERA and SKA-Low predictions. Considering NenuFAR with the new model, measurements >= 2 sigma are possible only for <= 600 with 0. 2 MHz channel-width and for a 10 times longer observation time of t (obs) = 1000 h. However, for the range 300 <= <= 600 and t obs = 1000 h more than 3smeasurements are still possible for NenuFAR when combining consecutive frequency channels within a 5 MHz band.
  •  
8.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy