SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mertes Stephan) "

Sökning: WFRF:(Mertes Stephan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Fuzzi, Sandro, et al. (författare)
  • Overview of the Po valley fog experiment 1994 (CHEMDROP)
  • 1998
  • Ingår i: Contributions to Atmospheric Physics. - 0005-8173. ; 71:1, s. 3-19
  • Forskningsöversikt (refereegranskat)abstract
    • The paper presents an outline of the CHEMDROP field experiment, carried out in November 1994 at the field station of S. Pietro Capofiume in the Po Valley, Italy. The main objective of the project was to address the issue of the size-dependent chemical composition of fog droplets, by experimentally investigating the following processes, which are expected to affect (or be affected by) the chemical composition of fog droplets as a function of size: a) the connection of the size-dependent chemical composition of CCN to the size-dependent composition of fog droplets; b) the gas/liquid partitioning of the gaseous species NH3, SO2, HCHO, HNO3 in fog; c) the Fe(II)/Fe(III) redox cycle in fog water. Some general results and overall conclusions of the experiment are reported in this paper, while more specific scientific questions are discussed in other companion papers in this issue. CHEMDROP results show that several processes concur in determining the size-dependence of fog droplets chemical composition: nucleation scavenging of pre-existing CCN, fog dynamical evolution and gas/liquid exchange between interstitial air and fog droplets. Chemical transformations in the liquid phase can cause further changes in the chemical composition of the droplets. Only by taking into account the combination of all these processes, is it possible to explain the inhomogeneities in fog droplet chemical composition.
  •  
3.
  • Lacher, Larissa, et al. (författare)
  • The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
  • 2024
  • Ingår i: ATMOSPHERIC CHEMISTRY AND PHYSICS. - 1680-7316 .- 1680-7324. ; 24:4, s. 2651-2678
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice crystal formation in mixed-phase clouds is initiated by specific aerosol particles, termed ice-nucleating particles (INPs). Only a tiny fraction of all aerosol particles are INPs, providing a challenge for contemporary INP measurement techniques. Models have shown that the presence of INPs in clouds can impact their radiative properties and induce precipitation formation. However, for a qualified implementation of INPs in models, measurement techniques able to accurately detect the temperature-dependent INP concentration are needed. Here we present measurements of INP concentrations in ambient air under conditions relevant to mixed-phase clouds from a total of 10 INP methods over 2 weeks in October 2018 at the Puy de Dome observatory in central France. A special focus in this intercomparison campaign was placed on having overlapping sampling periods. Although a variety of different measurement principles were used, the majority of the data show INP concentrations within a factor of 5 of one another, demonstrating the suitability of the instruments to derive model-relevant INP data.Lower values of comparability are likely due to instrument-specific features such as aerosol lamina spreading in continuous-flow diffusion chambers, demonstrating the need to account for such phenomena when interpreting INP concentration data from online instruments. Moreover, consistently higher INP concentrations were observed from aerosol filters collected on the rooftop at the Puy de Dome station without the use of an aerosol inlet.
  •  
4.
  • Wendish, Manfred, et al. (författare)
  • Drop size distribution and LWC in Po valley fog
  • 1998
  • Ingår i: Contributions to Atmospheric Physics. - 0005-8173. ; 71:1, s. 87-100
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper results are presented of ground-based fog microphysical measurements obtained during the CHEMDROP experiment in the Po Valley (Northern Italy) in November 1994. Altogether about 85 hours of drop microphysical data are analyzed. At the beginning of the experiment a comparison of some of the different microphysical instruments, operated during the experiment, was performed. It has revealed some differences between the Liquid Water Content LWC measured by Particle Volume Monitors (PVMs), and by several Forward Scattering Spectrometer Probes (FSSPs). Possible explanations for the discrepancies are discussed. The FSSP derived drop size distributions (number and mass) were parameterized in terms of log-normal distributions. The statistical analysis of the fittings has shown that the overwhelming majority of the drop mass size distributions was characterized by a bimodal shape. The most frequent values of the mode parameters (median diameter, geometric standard deviation) are given in Table 3 of this paper. An investigation of the temporal evolution of the drop size distribution revealed two typical phases of fog formation. In the first step both modes of the drop mass size distribution increase more or less uniform, whereas in the second phase the large drop mode drastically rises. Furthermore, the second phase is characterized by quasi-periodic oscillations in nearly all mode parameters of the drop size distribution with a period between ten and 15 minutes. In the last part of the paper the frequent occurrence of drizzle within the fog was studied by comparing the measurements with respective model calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy