SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Metcalfe Dan) "

Sökning: WFRF:(Metcalfe Dan)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huaraca Huasco, Walter, et al. (författare)
  • Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes
  • 2014
  • Ingår i: Plant Ecology & Diversity. - : Informa UK Limited. - 1755-0874 .- 1755-1668. ; 7:1-2, s. 125-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tropical montane cloud forests (TMCF) are unique ecosystems with high biodiversity and large carbon reservoirs. To date there have been limited descriptions of the carbon cycle of TMCF. Aims: We present results on the production, allocation and cycling of carbon for two mid-elevation (1500-1750 m) tropical montane cloud forest plots in San Pedro, Kosnipata Valley, Peru. Methods: We repeatedly recorded the components of net primary productivity (NPP) using biometric measurements, and autotrophic (R-a) and heterotrophic (Rh) respiration, using gas exchange measurements. From these we estimated gross primary productivity (GPP) and carbon use efficiency (CUE) at the plot level. Results: The plot at 1500 m was found very productive, with our results comparable with the most productive lowland Amazonian forests. The plot at 1750 m had significantly lower productivity, possibly because of greater cloud immersion. Both plots had similar patterns of NPP allocation, a substantial seasonality in NPP components and little seasonality in R-a. Conclusions: These two plots lie within the ecotone between lower and upper montane forests, near the level of the cloud base. Climate change is likely to increase elevation of the cloud base, resulting in shifts in forest functioning. Longer-term surveillance of the carbon cycle at these sites would yield valuable insights into the response of TMCFs to a shifting cloud base.
  •  
2.
  • Hwang, Bernice, et al. (författare)
  • Impacts of insect frass and cadavers on soil surface litter decomposition along a tropical forest temperature gradient
  • 2022
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Insect herbivores play important roles in shaping many ecosystem processes, but how climate change will alter the effects of insect herbivory are poorly understood. To address this knowledge gap, we quantified for the first time how insect frass and cadavers affected leaf litter decomposition rates and nutrient release along a highly constrained 4.3°C mean annual temperature (MAT) gradient in a Hawaiian montane tropical wet forest. We constructed litterbags of standardized locally sourced leaf litter, with some amended with insect frass + cadavers to produce treatments designed to simulate ambient (Control = no amendment), moderate (Amended-Low = 2 × Control level), or severe (Amended-High = 11 × Control level) insect outbreak events. Multiple sets of these litterbags were deployed across the MAT gradient, with individual litterbags collected periodically over one year to assess how rising MAT altered the effects of insect deposits on litter decomposition rates and nitrogen (N) release. Increased MAT and insect inputs additively increased litter decomposition rates and N immobilization rates, with effects being stronger for Amended-High litterbags. However, the apparent temperature sensitivity (Q10) of litter decomposition was not clearly affected by amendments. The effects of adding insect deposits in this study operated differently than the slower litter decomposition and greater N mobilization rates often observed in experiments which use chemical fertilizers (e.g., urea, ammonium nitrate). Further research is required to understand mechanistic differences between amendment types. Potential increases in outbreak-related herbivore deposits coupled with climate warming will accelerate litter decomposition and nutrient cycling rates with short-term consequences for nutrient cycling and carbon storage in tropical montane wet forests.
  •  
3.
  • Jonsson, Micael, et al. (författare)
  • Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient
  • 2015
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 18:1, s. 154-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Relative to vascular plants, little is known about what factors control bryophyte communities or how they respond to successional and environmental changes. Bryophytes are abundant in boreal forests, thus changes in moss community composition and functional traits (for example, moisture and nutrient content; rates of photosynthesis and respiration) may have important consequences for ecosystem processes and microfaunal communities. Through synthesis of previous work and new analyses integrating new and published data from a long-term successional gradient in the boreal forest of northern Sweden, we provide a comprehensive view of the biotic factors (for example, vascular plant productivity, species composition, and diversity) and abiotic factors (for example, soil fertility and light transmission) that impact the moss community. Our results show that different aspects of the moss community (that is, composition, functional traits, moss-driven processes, and associated invertebrate fauna) respond to different sets of environmental variables, and that these are not always the same variables as those that influence the vascular plant community. Measures of moss community composition and functional traits were primarily influenced by vascular plant community composition and productivity. This suggests that successional shifts in abiotic variables, such as soil nutrient levels, indirectly affect the moss community via their influence on vascular plant community characteristics, whereas direct abiotic effects are less important. Among the moss-driven processes, moss litter decomposition and moss productivity were mainly influenced by biotic variables (notably the community characteristics of both vascular plants and mosses), whereas moss functional traits (primarily specific leaf area and tissue nutrient concentrations) also were important in explaining moss di-nitrogen-fixation rates. In contrast, both abiotic and biotic variables were important drivers of moss microfaunal community structure. Taken together, our results show which abiotic and biotic factors impact mosses and their associated organisms, and thus highlight that multiple interacting factors need to be considered to understand how moss communities, associated food webs, and the ecosystem processes they influence will respond to environmental change.
  •  
4.
  • Metcalfe, Daniel B., et al. (författare)
  • Microbial change in warming soils
  • 2017
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 358:6359, s. 41-42
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Long-term reorganization of microbial communities leads to pulses in carbon release
  •  
5.
  • Metcalfe, Dan, et al. (författare)
  • Distinct impacts of different mammalian herbivore assemblages on arctic tundra CO2 exchange during the peak of the growing season
  • 2015
  • Ingår i: Oikos. - : Wiley. - 1600-0706 .- 0030-1299. ; 124:12, s. 1632-1638
  • Tidskriftsartikel (refereegranskat)abstract
    • Herbivores play a key role in the carbon (C) cycle of arctic ecosystems, but these effects are currently poorly represented within models predicting land-atmosphere interactions under future climate change. Although some studies have examined the influence of various individual species of herbivores on tundra C sequestration, few studies have directly compared the effects of different herbivore assemblages. We measured peak growing season instantaneous ecosystem carbon dioxide (CO2) exchange (photosynthesis, respiration and net ecosystem exchange) on replicated plots in arctic tundra which, for 14 years, have excluded different portions of the herbivore population (grazed controls, large mammals excluded, both small and large mammals excluded). Herbivory suppressed photosynthetic CO2 uptake, but caused little change in ecosystem respiration. Despite evidence that small mammals consume a greater portion of plant biomass in these ecosystems, the effect of excluding only large herbivores was indistinguishable from that of excluding both large and small mammals. The herbivory-induced decline in photosynthesis was not entirely attributable to a decline in leaf area but also likely reflects shifts in plant community composition and/or species physiology. One shrub species - Betula nana - accounted for only around 13% of total aboveground vascular plant biomass but played a central role in controlling ecosystem CO2 uptake and release, and was suppressed by herbivory. We conclude that herbivores can have large effects on ecosystem C cycling due to shifts in plant aboveground biomass and community composition. An improved understanding of the mechanisms underlying the distinct ecosystem impacts of different herbivore groups will help to more accurately predict the net impacts of diverse herbivore communities on arctic C fluxes.
  •  
6.
  • Metcalfe, Daniel, et al. (författare)
  • Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97, s. 124-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological theory, developed largely from ungulates and grassland systems, predicts that herbivory accelerates nutrient cycling more in productive than unproductive systems. This prediction may be important for understanding patterns of ecosystem change over time and space, but its applicability to other ecosystems and types of herbivore remain uncertain. We estimated fluxes of nitrogen (N) and phosphorus (P) from herbivory of a common tree species (Betula pubescens) by a common species of herbivorous insect along a similar to 5000-yr boreal chronosequence. Contrary to established theory, fluxes of N and P via herbivory increased along the chronosequence despite a decline in plant productivity. The herbivore-mediated N and P fluxes to the soil are comparable to the main alternative pathway for these nutrients via tree leaf litterfall. We conclude that insect herbivores can make large contributions to nutrient cycling even in unproductive systems, and influence the rate and pattern of ecosystem development, particularly in systems with low external nutrient inputs.
  •  
7.
  • Veen, Ciska, et al. (författare)
  • Above-ground and below-ground plant responses to fertilization in two subarctic ecosystems
  • 2015
  • Ingår i: Arctic, Antarctic and Alpine Research. - 1938-4246 .- 1523-0430. ; 47:4, s. 693-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil nutrient supply is likely to change in the Arctic due to altered process rates associated with climate change. Here, we compare the responses of herbaceous tundra and birch forest understory to fertilization, considering both above-and below-ground responses. We added nitrogen and phosphorus to plots in both vegetation types for three years near Abisko, northern Sweden, and measured the effect on above-and below-ground plant community properties and soil characteristics. Fertilization increased ground-layer shoot mass, the cover of grasses, and tended to enhance total root length below-ground, while it reduced the cover of low statured deciduous dwarf-shrubs. The only statistically significant interaction between vegetation type and fertilization was for grass cover, which increased twofold in forest understory but sixfold in tundra following fertilization. The lack of interactions for other variables suggests that the ground layers in these contrasting vegetation types have similar responses to fertilization. The nutrient-driven increase in grass cover and species-specific differences in productivity and root characters may alter ecosystem dynamics and C cycling in the long-term, but our study indicates that the response of birch forest understory and tundra vegetation may be consistent.
  •  
8.
  • Wardle, David, et al. (författare)
  • Above-ground and below-ground responses to long-term nutrient addition across a retrogressive chronosequence
  • 2016
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 104:2, s. 545-560
  • Tidskriftsartikel (refereegranskat)abstract
    • There is much interest in understanding ecosystem responses to local-scale soil fertility variation, which has often been studied using retrogressive chronosequences that span thousands of years and show declining fertility and plant productivity over time. There have been few attempts to experimentally test how plant nutrient limitation changes during retrogression.We studied a well-characterized system of 30 forested lake islands in northern Sweden that collectively represent a 5350-year post-fire retrogressive chronosequence, with fertility and productivity decreasing as time since fire increases. For each island, we set up four plots on understorey vegetation, each subjected to a different fertilizer treatment over 6 years: no additions, nitrogen (N) only, phosphorus (P) only and N + P.We found that both N and P additions reduced feather moss and thus total plant biomass. Meanwhile, the three dominant vascular plant species showed contrasting biomass responses, but similar responses of foliar nutrient concentrations to nutrient additions. Fertilization reduced most microbial groups and altered CO2 fluxes, most likely through feather moss reduction. Against expectations, the majority of interactive effects of N and P were antagonistic.Changes in effects of nutrient additions during retrogression were usually modest.Empetrum hermaphroditum biomass was increasingly promoted by P and N + P addition, while vascular plant N-to-P ratios were increasingly reduced by P addition, indicating increasing plant limitation by nutrients (notably P) during retrogression. Below-ground, positive effects of N addition on soil mineral N increased, while negative effects of N addition on soil fungi decreased during retrogression; no other below-ground effects of fertilization changed along the gradient.Synthesis. Our results show that forest understorey communities on islands of different fire history and thus stages of retrogression show relatively modest differences in how they respond to nutrient addition despite large changes in ecosystem productivity and soil fertility, probably because of high species turnover and adaptation of communities to infertile conditions. While increased nutrient availability (as expected through global change) may have important ecological consequences, these effects are likely, especially below-ground, to be rather similar across ecosystems that differ greatly in nutrient availability and productivity.
  •  
9.
  •  
10.
  • Doughty, Christopher E., et al. (författare)
  • Drought impact on forest carbon dynamics and fluxes in Amazonia
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 519:7541, s. 78-140
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2005 and 2010 the Amazon basin experienced two strong droughts', driven by shifts in the tropical hydrological regime(2) possibly associated with global climate change(3), as predicted by some global models'. Tree mortality increased after the 2005 drought(4), and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth(6). We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.
  •  
11.
  • Doughty, Christopher E., et al. (författare)
  • Source and sink carbon dynamics and carbon allocation in the Amazon basin
  • 2015
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 29:5, s. 645-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes to the carbon cycle in tropical forests could affect global climate, but predicting such changes has been previously limited by lack of field-based data. Here we show seasonal cycles of the complete carbon cycle for 14, 1ha intensive carbon cycling plots which we separate into three regions: humid lowland, highlands, and dry lowlands. Our data highlight three trends: (1) there is differing seasonality of total net primary productivity (NPP) with the highlands and dry lowlands peaking in the dry season and the humid lowland sites peaking in the wet season, (2) seasonal reductions in wood NPP are not driven by reductions in total NPP but by carbon during the dry season being preferentially allocated toward either roots or canopy NPP, and (3) there is a temporal decoupling between total photosynthesis and total carbon usage (plant carbon expenditure). This decoupling indicates the presence of nonstructural carbohydrates which may allow growth and carbon to be allocated when it is most ecologically beneficial rather than when it is most environmentally available.
  •  
12.
  • Doughty, Christopher E., et al. (författare)
  • What controls variation in carbon use efficiency among Amazonian tropical forests?
  • 2018
  • Ingår i: Biotropica. - : Wiley. - 0006-3606. ; 50:1, s. 16-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long-term mean annual temperatures do not impact CUE.
  •  
13.
  • Fayle, Tom M, et al. (författare)
  • A positive relationship between ant biodiversity (Hymenoptera: Formicidae) and rate of scavenger-mediated nutrient redistribution along a disturbance gradient in a south-east Asian rain forest
  • 2011
  • Ingår i: MYRMECOLOGICAL NEWS. - : OESTERREICHISCHE GESELL ENTOMOFAUNISTIK, C/O NATURHISTOR MUSEUM WIEN, ZWEITE ZOOLOGISCHE ABTEILUNG (INSEKTEN), BURGRING 7, WIEN, AUSTRIA. - 1994-4136. ; 14, s. 5-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Human modification of pristine habitats almost always leads to the local extinction of a subset of the species present. This means that the ecosystem processes carried out by the remaining species may change. It is well documented that particular species of ants carry out important ecosystem processes. However, while much work has been carried out to investigate the link between biodiversity and ecosystem functioning in other taxa, this has received relatively little attention for ant communities. In particular, no attempt has been made to link levels of ant diversity with the rates of nutrient redistribution carried out by scavenging species. Here we investigate the impacts of anthropogenic disturbance on the rate of scavenger-mediated nutrient redistribution, using bait-removal rate as a surrogate measure. We found that although ant species richness, diversity, biomass and rates of bait removal did not change systematically across the disturbance gradient, the rate of bait removal was related to ant species richness. Sites with more ant species experienced a faster rate of bait removal. This is the first documented positive relationship between ant species richness and the rate of an ecosystem process. If these results are applicable at larger spatial scales for a wider range of nutrient sources, loss of ant species could lead to important changes in the way that ecosystems function.
  •  
14.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The classification of supernovae (SNe) and its impact on our understanding of explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification-connecting SN light curves back to their spectroscopically defined classes. Here, we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class.
  •  
15.
  • Ibanez, Thomas, et al. (författare)
  • Damage to tropical forests caused by cyclones is driven by wind speed but mediated by topographical exposure and tree characteristics
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.
  •  
16.
  • Malhi, Yadvinder, et al. (författare)
  • The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 21:6, s. 2283-2295
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.
  •  
17.
  • Metcalfe, Dan (författare)
  • A sink down under
  • 2014
  • Ingår i: Nature. - 0028-0836. ; 509:7502, s. 566-567
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
18.
  • Rowland, L, et al. (författare)
  • After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:12, s. 4662-4672
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesise that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2±2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5±3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. This article is protected by copyright. All rights reserved.
  •  
19.
  • Rowland, L, et al. (författare)
  • Death from drought in tropical forests is triggered by hydraulics not carbon starvation.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 528:7580, s. 119-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.
  •  
20.
  • Rowland, Lucy, et al. (författare)
  • Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics
  • 2018
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 106:4, s. 1673-1682
  • Tidskriftsartikel (refereegranskat)abstract
    • Litterfall dynamics in tropical forests are a good indicator of overall tropical forest function, indicative of carbon invested in both photosynthesising tissues and reproductive organs such as flowers and fruits. These dynamics are sensitive to changes in climate, such as drought, but little is known about the long-term responses of tropical forest litterfall dynamics to extended drought stress. We present a 15-year dataset of litterfall (leaf, flower and fruit, and twigs) from the world's only long-running drought experiment in tropical forest. This dataset comprises one of the longest published litterfall time series in natural forest, which allows the long-term effects of drought on forest reproduction and canopy investment to be explored. Over the first 4 years of the experiment, the experimental soil moisture deficit created only a small decline in total litterfall and leaf fall (12% and 13%, respectively), but a very strong initial decline in reproductive litterfall (flowers and fruits) of 54%. This loss of flowering and fruiting was accompanied by a de-coupling of all litterfall patterns from seasonal climate variables. However, following >10 years of the experimental drought, flower and fruiting re-stabilised at levels greater than in the control plot, despite high tree mortality in the drought plot. Litterfall relationships with atmospheric drivers were re-established alongside a strong new apparent trade-off between litterfall and tree growth. Synthesis. We demonstrate that this tropical forest went through an initial shock response during the first 4 years of intense drought, where reproductive effort was arrested and seasonal litterfall patterns were lost. However, following >10 years of experimental drought, this system appears to be re-stabilising at a new functional state where reproduction is substantially elevated on a per tree basis; and there is a new strong trade-off between investment in canopy production and wood production.
  •  
21.
  • Villar, V. Ashley, et al. (författare)
  • SuperRAENN : A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Automated classification of supernovae (SNe) based on optical photometric light-curve information is essential in the upcoming era of wide-field time domain surveys, such as the Legacy Survey of Space and Time (LSST) conducted by the Rubin Observatory. Photometric classification can enable real-time identification of interesting events for extended multiwavelength follow-up, as well as archival population studies. Here we present the complete sample of 5243 SN-like light curves (in g(P1)r(P1)i(P1)z(P1)) from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). The PS1-MDS is similar to the planned LSST Wide-Fast-Deep survey in terms of cadence, filters, and depth, making this a useful training set for the community. Using this data set, we train a novel semisupervised machine learning algorithm to photometrically classify 2315 new SN-like light curves with host galaxy spectroscopic redshifts. Our algorithm consists of an RF supervised classification step and a novel unsupervised step in which we introduce a recurrent autoencoder neural network (RAENN). Our final pipeline, dubbed SuperRAENN, has an accuracy of 87% across five SN classes (Type Ia, Ibc, II, IIn, SLSN-I) and macro-averaged purity and completeness of 66% and 69%, respectively. We find the highest accuracy rates for SNe Ia and SLSNe and the lowest for SNe Ibc. Our complete spectroscopically and photometrically classified samples break down into 62.0% Type Ia (1839 objects), 19.8% Type II (553 objects), 4.8% Type IIn (136 objects), 11.7% Type Ibc (291 objects), and 1.6% Type I SLSNe (54 objects).
  •  
22.
  • White, Helen E., et al. (författare)
  • Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 116:22, s. E111-E117
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial quantitation of BCR-ABL mRNA levels is an important indicator of therapeutic response for patients with chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, but there is substantial variation in the real-time quantitative polymerase chain reaction methodologies used by different testing laboratories. To help improve the comparability of results between centers we sought to develop accredited reference reagents that are directly linked to the BCR-ABL international scale. After assessment of candidate cell lines, a reference material panel comprising 4 different dilution levels of freeze-dried preparations of K562 cells diluted in HL60 cells was prepared. After performance evaluation, the materials were assigned fixed percent BCR-ABL/control gene values according to the International Scale. A recommendation that the 4 materials be established as the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL translocation by real-time quantitative polymerase chain reaction was approved by the Expert Committee on Biological Standardization of the World Health Organization in November 2009. We consider that the development of these reagents is a significant milestone in the standardization of this clinically important test, but because they are a limited resource we suggest that their availability is restricted to manufacturers of secondary reference materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22
Typ av publikation
tidskriftsartikel (22)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Metcalfe, Dan (16)
Metcalfe, Daniel (5)
Doughty, Christopher ... (5)
Malhi, Yadvinder (4)
Meir, P. (4)
Meir, Patrick (4)
visa fler...
Metcalfe, Daniel B. (3)
Wardle, David (3)
Girardin, Cecile A. ... (3)
Malhi, Y. (3)
da Costa, A. C. L. (3)
Silva Espejo, Javier ... (3)
da Costa, Antonio C. ... (3)
Berger, Edo (2)
Rest, Armin (2)
Wainscoat, Richard (2)
Challis, Peter (2)
Kirshner, Robert P. (2)
Margutti, Raffaella (2)
Villar, V. Ashley (2)
Chornock, Ryan (2)
Foley, Ryan J. (2)
Milisavljevic, Dan (2)
Aragão, Luiz E. O. C ... (2)
Hosseinzadeh, Griffi ... (2)
Lunnan, Ragnhild (2)
Jonsson, Micael (2)
Drout, Maria R. (2)
Pan, Yen-Chen (2)
Araujo-Murakami, Ale ... (2)
Araujo-Murakami, A. (2)
Girardin, C. A. J. (2)
Silva-Espejo, J. E. (2)
da Costa, M. C. (2)
Rocha, W. (2)
Goldsmith, Gregory R ... (2)
Farfan Amezquita, Fi ... (2)
Huaraca Huasco, Walt ... (2)
Rocha, Wanderley (2)
Metcalfe, Dan B. (2)
Jones, David O. (2)
Rowland, L. (2)
Scolnic, Daniel M. (2)
Magnier, Eugene (2)
Metcalfe, Nigel (2)
Waters, Christopher (2)
Marthews, Toby R. (2)
Salinas-Revilla, Nor ... (2)
Mencuccini, M (2)
Vasconcelos, S S (2)
visa färre...
Lärosäte
Lunds universitet (17)
Umeå universitet (6)
Sveriges Lantbruksuniversitet (5)
Uppsala universitet (2)
Stockholms universitet (2)
Linköpings universitet (1)
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Lantbruksvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy