SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Metinoz Ibrahim) "

Sökning: WFRF:(Metinoz Ibrahim)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alemani, Mattia, et al. (författare)
  • A study on emission of airborne wear particles from car brake friction pairs
  • 2015
  • Ingår i: SAE International Journal of Materials & Manufacturing. - : SAE International. - 1946-3979 .- 1946-3987. ; 9:1, s. 147-157
  • Tidskriftsartikel (refereegranskat)abstract
    • The emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles were obtained by a fast mobility particle sizer and an optical particle sizer. The temperature was measured by a thermocouple installed in the disc. The experiments show that as the temperature increases from 100 to 300 °C the emission of ultrafine particles intensifies while that of coarse particles decreases. There is a critical temperature at which the ultrafine particle emission rate rises stepwise by 4 to 6 orders of magnitude. For the friction pairs investigated, the critical temperature was found to be between 165 and 190 °C. Below the critical temperature, fine particles outnumber coarse and ultrafine particles, although coarse particles make up the bulk of the particulate matter mass. The friction pairs differ in the ultrafine particle emission rate by 1 to 2 orders of magnitude. Above the critical temperature, ultrafine particles constitute almost 100% of the total particle number and their relative mass contribution can exceed 50%. Analysis of the particle size distributions revealed peaks at 0.19-0.29, 0.9 and 1.7 μm. Above the critical temperature, one more peak appears in the ultrafine particle range at 0.011-0.034 μm.
  •  
2.
  • Alemani, Mattia, et al. (författare)
  • Dry sliding of a low steel friction material against cast iron at different loads: characterization of the friction layer and wear debris
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Pin-on-disc testing was used to investigate the sliding behavior and the wear products of a low-steel friction material against a cast iron disc at different applied loads, to investigate the effect of the temperature rise induced by frictional heating. The testing rig was operated in a clean chamber with a purified incoming air flux. The outgoing flux carries the wear particles to an impactor that counted and sorted them by average diameter and weight. At increasing applied loads, corresponding to a proportional increase of the pin-disc contact temperature, the coverage of both the pin and disc surface by a friction layer was found to increase too. The relevant X-Ray diffraction patterns revealed the presence of a large amount of graphite and different compounds originating from the friction material and from the counterface disc, mainly iron oxides, as concerns this latter. After the test at the lowest investigated load, i.e., 1 kg, the disc worn surface exhibited abrasive grooves and a discontinuous friction layer mainly made of compacted iron oxide particles. After the test at higher loads, i.e., 5 and 7 kg, the disc surface was covered by a compact friction layer. As concerns the friction layer on the pins, most of the ingredients from the friction material were detected, in association with the iron oxides from the disc. These results can be interpreted in terms of the temperature stability range of the phenolic resin used as a binder of the friction material. The characterization of the collected airborne wear debris showed that the particles produced by the low temperature (i.e., low load) test were mostly equiaxed; whereas those produced by the high temperature (i.e., high loads) tests, predominantly displayed a plate-like morphology. The mechanisms of their formation in relation to the characteristics of the friction layers are illustrated and discussed.
  •  
3.
  • Metinoz, Ibrahim, et al. (författare)
  • COULD PIN-ON-DISC TRIBOMETERS BE USED TO STUDY THE FRICTION/WEAR PERFORMANCE OF DISC BRAKE MATERIALS?
  • 2016
  • Ingår i: EUROBRAKE 2016. - Milan.
  • Konferensbidrag (refereegranskat)abstract
    • Pin-on-disc tribometers are used by the academia to study friction and wear of disc brake materials. It has been debated if a simplified set-up could reproduce the friction and wear behaviour of the disc brake assembly. The aim of this paper is to investigate and discuss this topic by comparing the friction surfaces with diverse microscopy techniques. Also, coefficients of friction, wear, and collected airborne wear particles are compared. Although the tests are based on different testing procedures (tribometers - drag test and dyno-bench test – single station), the results show that tribometers provide information related to the friction-wear performance, character of friction surfaces, and character of wear particles, which mirror the behaviour of the samples during dyno-bench tests.
  •  
4.
  • Perricone, Guido, 1973-, et al. (författare)
  • A concept for reducing PM10 emissions for car brakes by 50%
  • 2018
  • Ingår i: Wear. - : Elsevier. - 0043-1648 .- 1873-2577. ; 396, s. 135-145
  • Tidskriftsartikel (refereegranskat)abstract
    • With regard to airborne particles with an aerodynamic diameter of less than 10 mu m (PM10), in countries in the European Union, the mass of brake emissions equals approximately 8-27% of the total traffic-related emissions. Using a research methodology combining tests at different scale levels with contact mechanics simulations and PM10 chemical characterization, the REBRAKE EU-financed project had the following aims: i) to demonstrate the possibility of reducing the PM10 fraction of the airborne particulate from brake wear by 50 wt%; ii) to enhance the general understanding on the physical and chemical phenomena underlying the brake wear process. The results achieved so far indicate that it is possible to design a disc brake system for a European standard car affording at least a 32 wt% PM10 emission reduction using a standard European pad and a heat-treated rotor. A further reduction to 65 wt% PM10 emission could be achieved with NAO pad material and the same heat-treated disc.
  •  
5.
  • Perricone, Guido, et al. (författare)
  • Towards the ranking of airborne particle emissions from car brakes - a system approach
  • 2017
  • Ingår i: Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering. - : Sage Publications. - 0954-4070 .- 2041-2991. ; 231:6, s. 781-797
  • Tidskriftsartikel (refereegranskat)abstract
    • Airborne particulate matter emitted from motor vehicle brakes is a contributor to urban air quality. Therefore, a method to rank brake pairs (pads and rotors) with respect to their particle emission factors in a reliable way is needed to develop a low-emission disc brake. A novel inertial disc brake dynamometer designed for brake particle emission studies, a modified SAE J 2707 cycle, an electrical low-pressure cascade impactor and a filter are used to test five different pad materials against cast-iron rotors. By changing only the pad materials, it is shown that the differences between the mass emission factor and the number emission factor of the the worst brake pair and those of the best brake pair decreases by more than four times and 19 times respectively. Furthermore, the results show that the material combination ranked the best in terms of the mass emission factor is ranked the worst in terms of the number emission factor. The results reveal that this combination of a test stand, a test cycle and particle instruments can discriminate between different brake pair materials in a reliable way in the case of the mass emission factors while more research has to be carried out in the case of the number emission factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy