SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meyer Jacob Carsten 1984 ) "

Sökning: WFRF:(Meyer Jacob Carsten 1984 )

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ninnes, Sofia, 1984-, et al. (författare)
  • Application of mid-infrared spectroscopy for the quantitative and qualitative analysis of organic matter in Holocene sediment records
  • 2024
  • Ingår i: The Holocene. - : Sage Publications. - 0959-6836 .- 1477-0911. ; 34:3, s. 259-273
  • Tidskriftsartikel (refereegranskat)abstract
    • The organic matter composition of lake sediments influences important in-lake biogeochemical processes and stores information on environmental changes. Extracting this information is notoriously difficult because of the complexity of the organic matter matrix, which routinely imposes trade-offs between high temporal and analytical detail in the selection of methods of analysis. Here, we demonstrate the potential of diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) for achieving both of these objectives using untreated bulk samples from two Holocene lake-sediment cores from central Sweden. We develop quantitative models for sediment total organic carbon (TOC) with the same predictive abilities as models based on samples diluted with KBr and qualitatively characterize the organic matter using a spectra processing-pipeline combined with principal component analysis. In the qualitative analysis we identified four organic matter sub-fractions and the interpretation of these is supported and further advanced with molecular data from pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Within these organic fractions, compound groups such as aromatics, lignin, aliphatics, proteins and polysaccharides were identified by means of DRIFTS and the analyses and processes outlined here enables rapid and detailed quantitative and qualitative analysis of sediment organic matter. The DRIFTS approach can be used as stand-alone method for OM characterization with high temporal resolution in Holocene sediment records. It may also function as a screening process for more specific analyses of sample subsets, such as when coupled with pyrolysis-GC/MS to further tease apart the OM composition, identify sources and determine degradation status.
  •  
2.
  • Bindler, Richard, 1963-, et al. (författare)
  • Reshaping the landscape: mining, metallurgy and a millennium of environmental changes in south-central Sweden
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Before the recognition of emerging environmental issues during the 20th century such as acid rain, mercury pollution, climate change and biodiversity loss, human activities had already significantly altered landscapes around the globe. As elsewhere in Europe, the introduction of agriculture into Sweden during the Bronze and Iron Ages led to changes in forest cover, especially in southern areas, but also more limited impacts in central and northern Sweden along river valleys and coastal areas. In central Sweden the rise and rapid spread of ore mining and metallurgy from the 12th and especially 13th century initiated a widespread reshaping of the landscape named after its mining heritage –Bergslagen (mining laws). This mineral rich 89,000 km2 region encompasses ~5000 metallurgical sites (furnaces, smelters, foundries, forges) and ~10000 mines registered in the Swedish National Antiquities Board’s database.Analyses of >30 lake-sediment records using a combination of geochemical, diatom and pollen analyses, in combination with archaeological and historical records and toponyms, add important details to the early, poorly documented history of mining/metallurgy as well as provide insights into some of the environmental impacts across this large landscape. These impacts included damming of lakes and regulation of watercourses for waterpower, increase in erosion, emission of metals to surface waters and the atmosphere (and leaching from slag piles), decrease in forest cover and changes in water quality. The discontinuous appearance of pollen from cultivated plants (cereals) indicates some limited settlement before the 12th century, but the regular occurrence thereafter of cereal pollen together with a sharp increase in charcoal particles and geochemical evidence of mining/metallurgical activities, indicates mining/metallurgy was a driving force for settlement. Decline in forest cover was gradual from the 13th century, but was more significant from the late 16th century when iron and copper production increased exponentially. The increased demand for charcoal and increased agriculture, including an expansion of summer forest farms, contributed to a reduction in inferred forest cover to 40–80% – as compared to pre-anthropogenic (≤2000 BP) values of 84–95%. From the 16th century charcoal became the limiting resource within Bergslagen and metallurgy expanded to regions adjoining Bergslagen, contributing to a more widespread decline in forest cover also beyond the Bergslagen landscape.In association with the increase in land-use activities and resulting changes in vegetation cover, there was a decline (20–50%) in spectrally inferred lake-water total organic carbon, which we hypothesize resulted from a decreased pool of labile soil carbon. In some lakes closely connected with blast furnaces, where the peasant-miners also lived and farmed, there was an increase in diatom-inferred lake-water pH – as observed previously in SW Sweden in association with Iron Age land use. Only in a suite of lakes in close proximity to the smelting of copper sulfide ores in the surroundings of Falun was there evidence for pre-20th century acidification.While current rates of environmental change may be unprecedented, they build on an already modified landscape. Because pre-industrial conditions, i.e., pre-19th century, are often used as a reference level the scale of current changes may underestimate the full extent of ecosystem and environmental impacts.
  •  
3.
  • Bonk, Alicja, et al. (författare)
  • Sedimentological and geochemical responses of Lake Żabińskie (north-eastern Poland) to erosion changes during the last millennium
  • 2016
  • Ingår i: Journal of Paleolimnology. - : Springer. - 0921-2728 .- 1573-0417. ; 56:2-3, s. 239-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased erosion triggered by land-use changes is a major process that influences lake sedimentation. We explored the record of erosion intensity in annually laminated sediments of Lake Żabińskie, northeast Poland. A 1000-year-long, annually resolved suite of sedimentological (varve thickness, sediment accumulation rate) and geochemical data (scanning XRF, loss on ignition, biogenic silica) was analyzed with multivariate statistics. PCA indicated erosion was a major process responsible for changes in the chemical composition of the sediments. Analysis of sedimentary facies enabled identification of major phases of erosion that influenced lake sedimentation. These phases are consistent with the history of land use, inferred from pollen analysis. From AD 1000 to 1610, conditions around and in Lake Żabińskie were relatively stable, with low erosion intensity in the catchment and a dominance of carbonate sedimentation. Between AD 1610 and 1740, higher lake productivity and increased delivery of minerogenic material were caused by development of settlements in the region and widespread deforestation. The most prominent changes were observed between AD 1740 and 1880, when further land clearance and increased agricultural activity caused intensified soil erosion and higher lake productivity. Landscape clearance also created better conditions for water column mixing, which led to changes in redox conditions in the hypolimnion. The most recent period (AD 1880–2010) was characterized by partial reforestation and a gradual decrease in the intensity of erosional processes.
  •  
4.
  • Brigham-Grette, Julie, et al. (författare)
  • Pliocene warmth, polar amplification, and stepped pleistocene cooling recorded in NE arctic russia
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 340:6139, s. 1421-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were similar to 8 degrees C warmer than today, when the partial pressure of CO2 was similar to 400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until similar to 2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.
  •  
5.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic
  • 2014
  • Ingår i: Climate of the Past. - : European Geosciences Union (EGU). - 1814-9324 .- 1814-9332. ; 10:1, s. 209-220
  • Tidskriftsartikel (refereegranskat)abstract
    • A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5 %), total organic carbon (TOC; n = 309; gradient: 0-2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0-0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R-CV(2) = 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was similar to 3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary.
  •  
6.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:21, s. 6579-6584
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A. D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.
  •  
7.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Independent measurement of biogenic silica in sediments by FTIR spectroscopy and PLS regression
  • 2014
  • Ingår i: Journal of Paleolimnology. - : Springer Netherlands. - 0921-2728 .- 1573-0417. ; 52:3, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples-51 samples per series-yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
  •  
8.
  • Meyer-Jacob, Carsten, 1984- (författare)
  • Infrared spectroscopy as a tool to reconstruct past lake-ecosystem changes : Method development and application in lake-sediment studies
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Natural archives such as lake sediments allow us to assess contemporary ecosystem responses to climate and environmental changes in a long-term context beyond the few decades to at most few centuries covered by monitoring or historical data. To achieve a comprehensive view of the changes preserved in sediment records, multi-proxy studies – ideally in high resolution – are necessary. However, this combination of including a range of analyses and high resolution constrains the amount of material available for analyses and increases the analytical costs. Infrared spectroscopic methods are a cost-efficient alternative to conventional methods because they offer a) a simple sample pre-treatment, b) a rapid measurement time, c) the non- or minimal consumption of sample material, and d) the potential to extract quantitative and qualitative information about organic and inorganic sediment components from a single measurement.The main objective of this doctoral thesis was twofold. The first part was to further explore the potential of Fourier transform infrared (FTIR) and visible-near infrared (VNIR) spectroscopy in paleolimnological studies as a) an alternative tool to conventional methods for quantifying biogenic silica (bSi) – a common proxy of paleoproductivity in lakes – in sediments and b) as a tool to infer past lake-water total organic carbon (TOC) levels from sediments. In a methodological study, I developed an independent application of FTIR spectroscopy and PLS modeling for determining bSi in sediments by using synthetic sediment mixtures with known bSi content. In contrast to previous models, this model is independent from conventional wet-chemical techniques, which had thus far been used as the calibration reference, and their inherent measurement uncertainties. The second part of the research was to apply these techniques as part of three multi-proxy studies aiming to a) improve our understanding of long-term element cycling in boreal and arctic landscapes in response to climatic and environmental changes, and b) to assess ongoing changes, particularly in lake-water TOC, on a centennial to millennial time scale.In the first applied study, high-resolution FTIR measurements of the 318-m long sediment record of Lake El’gygytgyn provided a detailed insight into long-term climate variability in the Siberian Arctic over the past 3.6 million years. Highest bSi accumulation occurred during the warm middle Pliocene (3.6-3.3 Ma), followed by a gradual but variable decline, which reflects the first onset of glacial periods and then the finally full establishment of glacial–interglacial cycles during the Quaternary. The second applied study investigated the sediment record of Torneträsk in subarctic northern Sweden also in relation to climate change, but only over the recent post-glacial period (~10 ka). By comparing responses to past climatic and environmental forcings that were recorded in this large-lake system with those recorded in small lakes from its catchment, I determined the significance and magnitude of larger-scale changes across the study region. Three different types of response were identified over the Holocene: i) a gradual response to the early landscape development following deglaciation (~10000-5300 cal yr BP); ii) an abrupt but delayed response following climate cooling during the late Holocene, which occurred c. 1300 cal yr BP – about 1000-2000 years later than in smaller lakes from the area; and iii) an immediate response to the ongoing climate change during the past century. The rapid, recent response in a previously rather insensitive lake-ecosystem emphasizes the unprecedented scale of ongoing climate change in northern Fennoscandia. In the third applied study, VNIR-inferred lake-water TOC concentrations from lakes across central Sweden showed that the ongoing, observed increase in surface water TOC in this region was in fact preceded by a long-term decline beginning already AD 1450-1600. These dynamics coincided with early human land use activities in the form of widespread summer forest grazing and farming that ceased over the past century. The results of this study show the strong impact of past human activities on past as well as ongoing TOC levels in surface waters, which has thus far been underestimated. The research in this thesis demonstrates that infrared spectroscopic methods can be an essential component in high-resolution, multi-proxy studies of past environmental and climate changes.
  •  
9.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Re-browning of Sudbury (Ontario, Canada) lakes now approaches pre-acid deposition lake-water dissolved organic carbon levels
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 725
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the implementation of large-scale lake monitoring in the similar to 1980s, water color and dissolved organic carbon (DOC) concentrations have increased in many northern lakes (i.e., lake browning), impacting the functioning of aquatic ecosystems. In regions that formerly experienced high levels of acid deposition, this browning trend has been largely attributed to the recovery from the impacts of past acid deposition. However, the extent to which DOC levels have now returned to naturally higher, pre-industrial conditions is still poorly understood. In this study, we assessed whether DOC levels are still influenced by acid deposition in lakes near Sudbury, Ontario, a region that has been heavily affected by sulfur dioxide emissions from local metal smelting during the 20th century. We analyzed water chemistry monitoring data (1981-2018), together with comparisons between modern and pre-industrial DOC levels inferred from sediment spectroscopy, for 51 acid-sensitive and 24 buffered reference lakes across the Sudbury landscape. Since 1981, DOC concentrations doubled in acid-sensitive lakes, with a mean increase of +1.6 mg/L, whereas in more buffered reference lakes, mean DOC levels increased by only 0.8 mg/L. Similarly, sediment-inferred DOC trends indicate that current DOC levels are, on average, similar to 22% below pre-industrial levels in acid sensitive systems compared to only similar to 10% in buffered lakes. Weakening correlations between DOC and acidification-related water chemistry variables (e.g., pH, alkalinity, metals) further indicate a diminishing influence of acid deposition on DOC in Sudbury lakes. These results highlight the strong impact that acid deposition has historically had on lake-water DOC dynamics in this region, but also suggest that DOC levels are approaching natural baseline levels in less acid-sensitive lakes, and that other drivers, such as changes in climate or vegetation cover, are now becoming the dominant controls on changes in DOC concentrations.
  •  
10.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • Regional Holocene climate and landscape changes recorded in the large subarctic lake Torneträsk, N Fennoscandia
  • 2017
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier. - 0031-0182 .- 1872-616X. ; 487, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the response of sensitive Arctic and subarctic landscapes to climate change is essential to determine the risks of ongoing and projected climate warming. However, these responses will not be uniform in terms of timing and magnitude across the landscape because of site-specific differences in ecosystem susceptibility to climate forcing. Here we present a multi-proxy analysis of a sediment record from the 330-km2 lake Torneträsk to assess the sensitivity of the Fennoscandian subarctic landscape to climate change over the past ~ 9500 years. By comparing responses of this large-lake system to past climatic and environmental changes with those in small lakes in its catchment, we assessed when the magnitude of change was sufficient to affect an entire region rather than only specific sub-catchments that may be more sensitive to localized environmental changes such as, e.g., tree-line dynamics. Our results show three periods of regional landscape alteration with distinct change in sediment composition: i) landscape development following deglaciation and through the Holocene Thermal Maximum, ~ 9500–3400 cal yr BP; ii) increased soil erosion during the Little Ice Age (LIA); and iii) rapid change during the past century coincident with ongoing climate change. The gradual landscape development led to successive changes in the lake sediment composition over several millennia, whereas climate cooling during the late Holocene caused a rather abrupt shift occurring within ~ 100 years. However, this shift at the onset of the LIA (~ 750 cal yr BP) occurred > 2000 years later than the first indications for climate cooling recorded in small lakes in the Torneträsk catchment, suggesting that a critical ecosystem threshold was not crossed until the LIA. In contrast, the ongoing response to recent climate change was immediate, emphasizing the unprecedented scale of ongoing climate changes in subarctic Fennoscandia.
  •  
11.
  • Meyer-Jacob, Carsten, 1984-, et al. (författare)
  • The browning and re-browning of lakes : Divergent lake-water organic carbon trends linked to acid deposition and climate change
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic carbon (DOC) concentrations and water colour are increasing in many inland waters across northern Europe and northeastern North America. This inland-water "browning" has profound physical, chemical and biological repercussions for aquatic ecosystems affecting water quality, biological community structures and aquatic productivity. Potential drivers of this "browning" trend are complex and include reductions in atmospheric acid deposition, changes in land use/cover, increased nitrogen deposition and climate change. However, because of the overlapping impacts of these stressors, their relative contributions to DOC dynamics remain unclear, and without appropriate long-term monitoring data, it has not been possible to determine whether the ongoing "browning" is unprecedented or simply a "re-browning" to pre-industrial DOC levels. Here, we demonstrate the long-term impacts of acid deposition and climate change on lake-water DOC concentrations in low and high acid-deposition areas using infrared spectroscopic techniques on similar to 200-year-long lake-sediment records from central Canada. We show that acid deposition suppressed naturally higher DOC concentrations during the 20th century, but that a "re-browning" of lakes is now occurring with emissions reductions in formerly high deposition areas. In contrast, in low deposition areas, climate change is forcing lakes towards new ecological states, as lake-water DOC concentrations now often exceed pre-industrial levels.
  •  
12.
  • Myrstener, Erik, et al. (författare)
  • Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape : The Moshyttan blast furnace as microcosm
  • 2019
  • Ingår i: The Holocene. - : Sage Publications. - 0959-6836 .- 1477-0911. ; 29:4, s. 578-591
  • Tidskriftsartikel (refereegranskat)abstract
    • The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past similar to 10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (similar to 5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4-5.6, LW-TOC 15-18 mg L-1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From similar to 1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30-50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3-0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.
  •  
13.
  • Myrstener, Erik, et al. (författare)
  • Long-term development and trajectories of inferred lake-water organic carbon and pH in naturally acidic boreal lakes
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:6, s. 2408-2422
  • Tidskriftsartikel (refereegranskat)abstract
    • Monitoring of surface waters in the boreal region over the last decades shows that waters are becoming browner. This timeframe may not, however, be sufficient to capture underlying trajectories and driving mechanisms of lake-water quality, important for prediction of future trajectories. Here we synthesize data from seven lakes in the Swedish boreal landscape, with contemporary lake-water total organic carbon (TOC) concentrations of 1.4–14.4 mg L−1, to conceptualize how natural and particularly human-driven processes at the landscape scale have regulated lake-water TOC levels over the Holocene. Sediment-inferred trends in TOC are supported by several proxies, including diatom-inferred pH. Before ~ 700 ce, all lakes were naturally acidic (pH 4.7–5.4) and the concentrations of inferred lake-water TOC were high (10–23 mg L−1). The introduction of traditional human land use from ~ 700 ce led to a decrease in lake-water TOC in all lakes (to 5–14 mg L−1), and in four poorly buffered lakes, also to an increase in pH by > 1 unit. During the 20th century, industrial acid deposition was superimposed on centuries of land use, which resulted in unprecedentedly low lake-water TOC in all lakes (3–11 mg L−1) and severely reduced pH in the four poorly buffered lakes. The other lakes resisted pH changes, likely due to close connections to peatlands. Our results indicate that an important part of the recent browning of boreal lakes is a recovery from human impacts. Furthermore, on a conceptual level we stress that contemporary environmental changes occur within the context of past, long-term disturbances.
  •  
14.
  • Myrstener, Erik, et al. (författare)
  • Long-term development of clear- and brown-water acidic lakes in the Swedish boreal landscape : implications for contemporary lake-water quality
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The recent browning of surface waters and its effects on water quality across northern latitudes continue to raise questions about the driving mechanisms and future trajectories. However, even when based on multi-decadal environmental monitoring data, assessments of contemporary trends and drivers often overlook potential underlying long-term changes in lake-water quality. Here we synthesize data from seven clear- and brown-water acidic lakes in the Swedish boreal landscape to conceptualize how natural and human-driven processes have regulated lake-water quality, measured as spectrally inferred lake-water total organic carbon (TOC) and diatom-inferred pH. From 10,000 BCE to ~500 CE, all studied lakes were browner (lake-water TOC 10–24 mg L-1) and underwent natural acidification, decreasing from pH ~7 to 4.7–5.4. From ~500 to 1850 CE, historical human land use caused lake-water TOC to decline by ~50% in all lakes and in the poorly buffered, clear-water lakes, pH to increase by >1 unit. During the 20th century, the interaction between centuries of land use and more recent industrial acid deposition resulted in unprecedentedly low lake-water TOC (3–8 mg L-1) in all lakes and severely re-duced pH in the poorly buffered lakes, whereas those surrounded by peatlands resisted these pH changes. These extreme values coincided with the onset of environmental monitoring, meaning that contempo-rary increases in lake-water TOC and pH occur within the context of past, long-term disturbances, which are therefore crucial to consider for the purposes of lake management and prediction of lake responses to future environmental disturbances, especially climate change.
  •  
15.
  • Weber, Michael E., et al. (författare)
  • 200,000 years of monsoonal history recorded on the lower Bengal Fan - strong response to insolation forcing
  • 2018
  • Ingår i: Global and Planetary Change. - : Elsevier. - 0921-8181 .- 1872-6364. ; 166, s. 107-119
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a multidisciplinary study to provide the stratigraphic and palaeoclimatic context of monsoonal rainfall dynamics and their responses to orbital forcing for the Bay of Bengal. Using sediment lightness we established an age model at orbital resolution for International Ocean Discovery Programme (IODP) Core U1452C-1H that covers the last 200 ka in the lower Bengal Fan. The low-resolution delta O-18 of G. sacculifer is consistent with global delta O-18 records, at least for major glacial-to-interglacial transitions. The variability of total organic carbon, total nitrogen, and the delta C-13 composition of organic matter indicate the marine origin of organic matter. Marine primary productivity likely increased during insolation minima, indicative for an enhanced NE monsoon during glacials and stadials. Pristine insolation forcing is also documented for wet-bulk density, red green color variability, and grain-size variations, indicating that darker and coarser-grained material deposited at higher sedimentation rates during insolation minima. Stronger NE monsoon likely amplified ocean-atmosphere interactions over the Indian Ocean, leading to stronger upwelling through shoaling the thermocline, and higher delivery of sediment to the Bay of Bengal due to higher soil erosion on land. In addition, lower glacial and stadial sea levels as well as stronger westward surface circulation favored delivery of coarser-grained fluvial material to the lower Bengal Fan. At the same time the stronger NE monsoon might have increased the aeolian supply. Total inorganic carbon, the Ca/Ti ratio, and biogenic silica vary dominantly on obliquity frequencies, suggesting mobilization and transport of lithogenic material primarily during lowered sea levels and/or higher influence of the Northern Hemisphere westerlies on the dust transport from the Tibetan Plateau. The close resemblance of sediment lightness and the climate record of Antarctic ice cores over multiple glacial cycles indicate close relationship between high southern latitude and tropical Asian climate through shifts in position of the Intertropical Convergence Zone. The Bengal Fan monsoonal record shows very clear and strict responses to insolation forcing in the lower part from -200 ka to the Younger Toba Tuff during Marine Isotope Stage (MIS) 7 - 5, and less distinct response patterns after deposition of the ash during MIS 4- 2, consistent with low-amplitude changes in insolation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy