SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mi Xiao yi) "

Sökning: WFRF:(Mi Xiao yi)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
4.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
5.
  • An, Junghwa, et al. (författare)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009-30 November 2009
  • 2010
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 10:2, s. 404-408
  • Tidskriftsartikel (refereegranskat)abstract
    • This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.
  •  
6.
  • Han, Yang, et al. (författare)
  • X-radiation inhibits histone deacetylase 1 and 2, upregulates Axin expression and induces apoptosis in non-small cell lung cancer
  • 2012
  • Ingår i: Radiation Oncology. - : BioMed Central. - 1748-717X. ; 7:183
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundHistone deacetylase (HDAC) plays an important role in the deacetylation of histone, which can alter gene expression patterns and affect cell behavior associated with malignant transformation. The aims of this study were to investigate the relationships between HDAC1, HDAC2, clinicopathologic characteristics, patient prognosis and apoptosis, to clarify the mechanism of upregulation of the Axis inhibitor Axin (an important regulator of the Wnt pathway) by X-radiation and to elucidate the effect of siRNA on radiation therapy of non-small cell lung cancer (NSCLC).MethodsHDAC1 and HDAC2 expression levels were measured by immunohistochemistry and reverse transcription PCR. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling and fluorescence activated cell sorting. BE1 cells expressing Axin were exposed to 2 Gy of X-radiation.ResultsExpression of HDAC1 and that of HDAC2 were correlated, and significantly higher in NSCLC tissues than in normal lung tissues (P < 0.05). HDAC1 and HDAC2 expression was correlated with pTNM stage and negatively correlated with differentiation of NSCLC and apoptotic index (P < 0.05). The prognosis of patients with low expression of HDAC1 and HDAC2 was better than that of those with high expression. X-radiation and siRNA inhibited HDAC1 and HDAC2 expression in NSCLC cells and Axin levels were significantly higher in BE1 cells.ConclusionsX-radiation and siRNA inhibit expression of HDAC1 and HDAC2, weaken the inhibitory effect of HDAC on Axin, upregulate Axin expression and induce apoptosis of lung cancer cells. Inhibition of HDAC1 and HDAC2 is a means of enhancing the radiosensitivity of NSCLC.
  •  
7.
  • Lu, Lu, et al. (författare)
  • Crystal structure of tubulin folding cofactor A from Arabidopsis thaliana and its beta-tubulin binding characterization
  • 2010
  • Ingår i: FEBS Letters. - : Wiley. - 1873-3468 .- 0014-5793. ; 584:16, s. 9-3533
  • Tidskriftsartikel (refereegranskat)abstract
    • Microtubules are composed of polymerized alpha/beta-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures beta-tubulin during the folding pathway, has been identified in many organisms. Here, we report the crystal structure of Arabidopsis thaliana TFC A (KIESEL, KIS), which forms a monomeric three-helix bundle. The functional binding analysis demonstrated that KIS interacts with beta-tubulin in plant. Furthermore, mutagenesis studies indicated that the alpha-helical regions of KIS participate in beta-tubulin binding. Unlike the budding yeast TFC A, the two loop regions of KIS are not required for this interaction suggesting a distinct binding mechanism of TFC A to beta-tubulin in plants.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy