SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michno Wojciech 1992) "

Sökning: WFRF:(Michno Wojciech 1992)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlred, Louise M, 1985, et al. (författare)
  • Probing Amyloid-β Pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI Imaging Mass Spectrometry
  • 2016
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 138:3, s. 469-478
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathological mechanisms underlying Alzheimer's disease (AD) are still not understood. The disease pathology is characterized by accumulation and aggregation of amyloid-β (Aβ) peptides into extracellular plaques, however the factors that promote neurotoxic Aβ aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides and proteins in biological tissues. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) based imaging was used to study Aβ deposition in transgenic mouse brain tissue and to elucidate the plaque associated chemical microenvironment. The imaging experiments were performed in brain sections of transgenic Alzheimer's disease mice carrying the Arctic and Swedish mutation of amyloid-beta precursor protein (tgArcSwe). Multivariate image analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their chemical identity. This include cortical and hippocampal Aβ deposits, whose amyloid peptide content was further verified using immunohistochemistry and laser micro dissection followed by MALDI MS analysis. Subsequent statistical analysis on spectral data of regions of interest (ROI) revealed brain region specific differences in Aβ peptide aggregation. Moreover, other plaque associated protein species were identified including macrophage migration inhibitory factor (MIF) suggesting neuroinflammatory processes and glial cell reactivity to be involved in AD pathology. The presented data further highlight the potential of IMS as powerful approach in neuropathology.
  •  
2.
  • Enzlein, T., et al. (författare)
  • Computational Analysis of Alzheimer Amyloid Plaque Composition in 2D-and Elastically Reconstructed 3D-MALDI MS Images
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:21, s. 14484-14493
  • Tidskriftsartikel (refereegranskat)abstract
    • MALDI mass spectrometry imaging (MSI) enables label-free, spatially resolved analysis of a wide range of analytes in tissue sections. Quantitative analysis of MSI datasets is typically performed on single pixels or manually assigned regions of interest (ROIs). However, many sparse, small objects such as Alzheimer's disease (AD) brain deposits of amyloid peptides called plaques are neither single pixels nor ROIs. Here, we propose a new approach to facilitate the comparative computational evaluation of amyloid plaque-like objects by MSI: a fast PLAQUE PICKER tool that enables a statistical evaluation of heterogeneous amyloid peptide composition. Comparing two AD mouse models, APP NL-G-F and APP PS1, we identified distinct heterogeneous plaque populations in the NL-G-F model but only one class of plaques in the PS1 model. We propose quantitative metrics for the comparison of technical and biological MSI replicates. Furthermore, we reconstructed a high-accuracy 3D-model of amyloid plaques in a fully automated fashion, employing rigid and elastic MSI image registration using structured and plaque-unrelated reference ion images. Statistical single-plaque analysis in reconstructed 3D-MSI objects revealed the A beta(1-42Arc) peptide to be located either in the core of larger plaques or in small plaques without colocalization of other A beta isoforms. In 3D, a substantially larger number of small plaques were observed than that indicated by the 2D-MSI data, suggesting that quantitative analysis of molecularly diverse sparsely-distributed features may benefit from 3D-reconstruction. Data are available via ProteomeXchange with identifier PXD020824.
  •  
3.
  •  
4.
  • Jonsson, Maria, et al. (författare)
  • Aggregated Aβ1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila
  • 2018
  • Ingår i: Cell Chemical Biology. - Cambridge, United States : Elsevier BV. - 2451-9456 .- 2451-9448. ; 25:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human Aβ1-42 associated with Alzheimer's disease. Expression of Aβ1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ring-tangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of Aβ1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of Aβ1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that Aβ1-42 cytotoxicity is both cell and aggregate morphotype dependent. Jonson et al. used transgenic Drosophila to understand cell-specific response to protein aggregates in neurodegenerative disease. They demonstrate that the Alzheimer-associated peptide Aβ1-42 form various amyloid structures with different toxic properties when expressed in different cell types of the brain. © 2018 Elsevier Ltd
  •  
5.
  • Karlsson, Oskar, et al. (författare)
  • MALDI imaging delineates hippocampal glycosphingolipid changes associated with neurotoxin induced proteopathy following neonatal BMAA exposure.
  • 2017
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434. ; 1865:7, s. 740-746
  • Tidskriftsartikel (refereegranskat)abstract
    • The environmental toxin β-N-methylamino-L-alanine (BMAA) has been proposed to contribute to neurodegenerative diseases. We have previously shown that neonatal exposure to BMAA results in dose-dependent cognitive impairments, proteomic alterations and progressive neurodegeneration in the hippocampus of adult rats. A high BMAA dose (460mg/kg) also induced intracellular fibril formation, increased protein ubiquitination and enrichment of proteins important for lipid transport and metabolism. The aim of this study was therefore to elucidate the role of neuronal lipids in BMAA-induced neurodegeneration. By using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we characterized the spatial lipid profile in the hippocampus of six month-old rats that were treated neonatally (postnatal days 9-10) with 460mg/kg BMAA. Multivariate statistical analysis revealed long-term changes in distinct ganglioside species (GM, GD, GT) in the dentate gyrus. These changes could be a consequence of direct effects on ganglioside biosynthesis through the b-series (GM3-GD3-GD2-GD1b-GT1b) and may be linked to astrogliosis. Complementary immunohistochemistry experiments towards GFAP and S100β further verified the role of increased astrocyte activity in BMAA-induced brain damage. This highlights the potential of imaging MS for probing chemical changes associated with neuropathological mechanisms in situ. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
  •  
6.
  • Kaya, Ibrahim, et al. (författare)
  • Delineating Amyloid Plaque Associated Neuronal Sphingolipids in Transgenic Alzheimer's Disease Mice (tgArcSwe) Using MALDI Imaging Mass Spectrometry
  • 2017
  • Ingår i: ACS Chemical Neuroscience. - : AMER CHEMICAL SOC. - 1948-7193. ; 8:2, s. 347-355
  • Tidskriftsartikel (refereegranskat)abstract
    • The major pathological hallmarks of Alzheimer's disease (AD) are the progressive aggregation and accumulation of beta-amyloid (A beta) and hyperphosphorylated tau protein into neurotoxic deposits. A beta aggregation has been suggested as the critical early inducer, driving the disease progression. However, the factors that promote neurotoxic A beta aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)-based imaging was used on transgenic Alzheimer's disease mouse (tgArcSwe) brain tissue to investigate the sphingolipid microenvironment of individual A beta plaques and elucidate plaque-associated sphingolipid alterations. Multivariate data analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their lipid chemical profile. This approach revealed sphingolipid species that distinctly located to cortical and hippocampal deposits, whose A beta identity was further verified using fluorescent amyloid staining and immunohistochemistry. Subsequent multivariate statistical analysis of the spectral data revealed significant localization of gangliosides and ceramides species to A beta positive plaques, which was accompanied by distinct local reduction of sulfatides. These plaque-associated changes in sphingolipid levels implicate a functional role of sphingolipid metabolism in A beta plaque pathology and AD pathogenesis. Taken together, the presented data highlight the potential of imaging mass spectrometry as a powerful approach for probing A beta plaque-associated lipid changes underlying AD pathology.
  •  
7.
  • Kaya, Ibrahim, et al. (författare)
  • Histology-Compatible MALDI Mass Spectrometry Based Imaging of Neuronal Lipids for Subsequent Immunofluorescent Staining.
  • 2017
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 89:8, s. 4685-4694
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) enables acquisition of spatial distribution maps for molecular species in situ. This can provide comprehensive insights on the pathophysiology of different diseases. However, current sample preparation and MALDI-IMS acquisition methods have limitations in preserving molecular and histological tissue morphology, resulting in interfered correspondence of MALDI-IMS data with subsequently acquired immunofluorescent staining results. We here investigated the histology-compatibility of MALDI-IMS to image neuronal lipids in rodent brain tissue with subsequent immunohistochemistry and fluorescent staining of histological features. This was achieved by sublimation of a low ionization energy matrix compound, 1,5-diaminonapthalene (1,5-DAN), minimizing the number of low-energy laser shots. This yielded improved lipid spectral quality, speed of data acquisition and reduced matrix cluster formation along with preservation of specific histological information at cellular levels. This gentle, histology compatible MALDI IMS protocol also diminished thermal effects and mechanical stress created during nanosecond laser ablation processes that were prominent in subsequent immune-fluorescence staining images but not with classical H&E staining on the same tissue section. Furthermore, this methodology proved to be a powerful strategy for investigating β-amyloid (Aβ) plaque-associated neuronal lipids as exemplified by performing high-resolution MALDI-IMS with subsequent fluorescent amyloid staining in a transgenic mouse model of Alzheimer's disease (tgSwe).
  •  
8.
  • Kaya, Ibrahim, et al. (författare)
  • Novel Trimodal MALDI Imaging Mass Spectrometry (IMS3) at 10 μm Reveals Spatial Lipid and Peptide Correlates Implicated in Aβ Plaque Pathology in Alzheimer's Disease.
  • 2017
  • Ingår i: ACS chemical neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 8:12, s. 2778-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can provide comprehensive molecular information in situ within the same tissue sections. This is of relevance for studying different brain pathologies such as Alzheimer's disease (AD), where recent data suggest a critical relevance of colocalizing Aβ peptides and neuronal lipids. We here developed a novel trimodal, high-resolution (10 μm) MALDI imaging MS (IMS) paradigm for negative and positive ion mode lipid analysis and subsequent protein ion imaging on the same tissue section. Matrix sublimation of 1,5-diaminonaphthalene (1,5-DAN) enabled dual polarity lipid MALDI IMS on the same pixel points at high spatial resolutions (10 μm) and with high spectral quality. This was followed by 10 μm resolution protein imaging on the same measurement area, which allowed correlation of lipid signals with protein distribution patterns within distinct cerebellar regions in mouse brain. The demonstrated trimodal imaging strategy (IMS3) was further shown to be an efficient approach for simultaneously probing Aβ plaque-associated lipids and Aβ peptides within the hippocampus of 18 month-old transgenic AD mice (tgArcSwe). Here, IMS3 revealed a strong colocalization of distinct lipid species including ceramides, phosphatidylinositols, sulfatides (Cer 18:0, PI 38:4, ST 24:0) and lysophosphatidylcholines (LPC 16:0, LPC 18:0) with plaque-associated Aβ isoforms (Aβ 1-37, Aβ 1-38, Aβ 1-40). This highlights the potential of IMS3 as an alternative, superior approach to consecutively performed immuno-based Aβ staining strategies. Furthermore, the IMS3 workflow allowed for multimodal in situ MS/MS analysis of both lipids and Aβ peptides. Altogether, the here presented IMS3 approach shows great potential for comprehensive, high-resolution molecular analysis of histological features at cellular length scales with high chemical specificity. It therefore represents a powerful approach for probing the complex molecular pathology of, e.g., neurodegenerative diseases that are characterized by neurotoxic protein aggregation.
  •  
9.
  • Kushnir, M. M., et al. (författare)
  • Association of PTHrP levels in CSF with Alzheimer's disease biomarkers
  • 2019
  • Ingår i: Clinical Mass Spectrometry. - : Elsevier BV. - 2376-9998. ; 14, s. 124-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Parathyroid hormone-related protein (PTHrP) is involved in intracellular calcium regulation, neural cell proliferation and synaptic transmission. To date, no studies have been performed to evaluate the potential of PTHrP concentrations in cerebrospinal fluid (CSF) as a biomarker of brain pathophysiology. In this study we evaluated the association between CSF concentrations of PTHrP with the core CSF biomarkers of Alzheimer's disease (AD). Methods: PTHrP and calcium were analysed using validated mass spectrometry based methods in a set of CSF samples that tested positive (n=45) and negative (n=45) for the AD biomarkers, including total tau protein (T-tau), phosphorylated tau protein (P-tau) and amyloid-beta 42 (A beta 42). The measured CSF concentrations of PTHrP and calcium (Ca) were evaluated for association with AD CSF biomarkers. Results: PTHrP and Ca concentrations in CSF samples ranged between 25 and 137 pmol/L and 0.92-1.53 mmol/L, respectively. Higher concentrations of PTHrP were observed in association with increased concentrations of T-tau and P-tau in the AD and the control group; while a stronger correlation was observed in the control group (rho=0.6, p < 0.0001; and rho=0.72, p < 0.0001, for T-tau and P-tau, respectively). Negative correlation was observed between concentrations of PTHrP and A beta 42 in the AD group (rho=0.27, p=0.015). A statistically significantly lower ratio A beta 42/PTHrP was observed in the AD group (p < 0.0001). Conclusion: In the current study, we observed an association of PTHrP concentrations with concentrations of clinically used CSF biomarkers of AD. Concentrations of PTHrP were positively correlated with concentrations of T-tau and P-tau, suggesting an association with neuronal secretion and function, which is reduced upon progression to AD pathology. Our data suggest potential utility of the A beta 42/PTHrP ratio in assessment of AD progression.
  •  
10.
  • Michno, Wojciech, 1992, et al. (författare)
  • Chemical imaging of evolving amyloid plaque pathology and associated A β peptide aggregation in a transgenic mouse model of Alzheimer's disease
  • 2020
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 152:5, s. 602-616
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major hallmarks of Alzheimer's disease (AD) pathology is the formation of extracellular amyloid β (A β) plaques. While A β has been suggested to be critical in inducing and, potentially, driving the disease, the molecular basis of AD pathogenesis is still under debate. Extracellular A β plaque pathology manifests itself upon aggregation of distinct A β peptides, resulting in morphologically different plaque morphotypes, including mainly diffuse and cored senile plaques. As plaque pathology precipitates long before any clinical symptoms occur, targeting the A β aggregation processes provides a promising target for early interventions. However, the chain of events of when, where and what A β species aggregate and form plaques remains unclear. The aim of this study was to investigate the potential of matrix-assisted laser desorption/ionization imaging mass spectrometry as a tool to study the evolving pathology in transgenic mouse models for AD. To that end, we used an emerging, chemical imaging modality - matrix-assisted laser desorption/ionization imaging mass spectrometry - that allows for delineating A β aggregation with specificity at the single plaque level. We identified that plaque formation occurs first in cortical regions and that these younger plaques contain higher levels of 42 amino acid-long A β (A β 1-42). Plaque maturation was found to be characterized by a relative increase in deposition of A β 1-40, which was associated with the appearance of a cored morphology for those plaques. Finally, other C-terminally truncated A β species (A β 1-38 and A β 1-39) exhibited a similar aggregation pattern as A β 1-40, suggesting that these species have similar aggregation characteristics. These results suggest that initial plaque formation is seeded by A β 1-42; a process that is followed by plaque maturation upon deposition of A β 1-40 as well as deposition of other C-terminally modified A β species.
  •  
11.
  • Michno, Wojciech, 1992, et al. (författare)
  • Chemical traits of cerebral amyloid angiopathy in familial British-, Danish-, and non-Alzheimer 's dementias
  • 2022
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 163:3, s. 233-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/beta-amyloid (A beta) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with A beta, while in contrast no A beta deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and A beta co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with A beta x-42 and A beta x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated A beta. When compared with FDD, A beta in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with A beta 3pE-40 and A beta 3-40 but not with A beta x-42 species. This suggests an increased aggregation propensity of A beta in FDD that promotes co-aggregation of both A beta and ADan. Further, CAA maturity appears to be mainly governed by A beta content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology.
  •  
12.
  • Michno, Wojciech, 1992, et al. (författare)
  • Following spatial Aβ aggregation dynamics in evolving Alzheimer's disease pathology by imaging stable isotope labeling kinetics
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:25
  • Tidskriftsartikel (refereegranskat)abstract
    • β-Amyloid (Aβ) plaque formation is the major pathological hallmark of Alzheimer's disease (AD) and constitutes a potentially critical, early inducer driving AD pathogenesis as it precedes other pathological events and cognitive symptoms by decades. It is therefore critical to understand how Aβ pathology is initiated and where and when distinct Aβ species aggregate. Here, we used metabolic isotope labeling in APPNL-G-F knock-in mice together with mass spectrometry imaging to monitor the earliest seeds of Aβ deposition through ongoing plaque development. This allowed visualizing Aβ aggregation dynamics within single plaques across different brain regions. We show that formation of structurally distinct plaques is associated with differential Aβ peptide deposition. Specifically, Aβ1-42 is forming an initial core structure followed by radial outgrowth and late secretion and deposition of Aβ1-38. These data describe a detailed picture of the earliest events of precipitating amyloid pathology at scales not previously possible. Copyright © 2021 The Authors, some rights reserved.
  •  
13.
  • Michno, Wojciech, 1992, et al. (författare)
  • GM1 locates to mature amyloid structures implicating a prominent role for glycolipid-protein interactions in Alzheimer pathology
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - : Elsevier BV. - 1878-1454 .- 1570-9639. ; 1867:5, s. 458-467
  • Tidskriftsartikel (refereegranskat)abstract
    • While the molecular mechanisms underlying Alzheimer's disease (AD) remain largely unknown, abnormal accumulation and deposition of beta amyloid (AD) peptides into plaques has been proposed as a critical pathological process driving disease progression. Over the last years, neuronal lipid species have been implicated in biological mechanisms underlying amyloid plaque pathology. While these processes comprise genetic features along with lipid signaling as well as direct chemical interaction of lipid species with A beta mono- and oligomers, more efforts are needed to spatially delineate the exact lipid-A beta plaque interactions in the brain. Chemical imaging using mass spectrometry (MS) allows to probe the spatial distribution of lipids and peptides in complex biological tissues comprehensively and at high molecular specificity. As different imaging mass spectrometry (IMS) modalities provide comprehensive molecular and spatial information, we here describe a multimodal ToF-SIMS- and MALDI-based IMS strategy for probing lipid and A beta peptide changes in a transgenic mouse model of AD (tgAPP(ArcSwe)). Both techniques identified a general AD-associated depletion of cortical sulfatides, while multimodal MALDI IMS revealed plaque specific lipid as well as A beta peptide isoforms. In addition, MALDI IMS analysis revealed chemical features associated with morphological heterogeneity of individual A beta deposits. Here, an altered GM1 to GM2/GM3 ganglioside metabolism was observed in the diffuse periphery of plaques but not in the core region. This was accompanied by an enrichment of A beta 1-40arc peptide at the core of these deposits. Finally, a localization of arachidonic acid (AA) conjugated phosphatidylinositols (PI) and their corresponding degradation product, lysophosphatidylinositols (LPI) to the periphery of A beta plaques was observed, indicating site specific macrophage activation and ganglioside processing.
  •  
14.
  • Michno, Wojciech, 1992, et al. (författare)
  • Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology
  • 2019
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 151:4, s. 488-506
  • Forskningsöversikt (refereegranskat)abstract
    • Recent advances in the understanding of basic pathological mechanisms in various neurological diseases depend directly on the development of novel bioanalytical technologies that allow sensitive and specific chemical imaging at high resolution in cells and tissues. Mass spectrometry-based molecular imaging (IMS) has gained increasing popularity in biomedical research for mapping the spatial distribution of molecular species in situ. The technology allows for comprehensive, untargeted delineation of in situ distribution profiles of metabolites, lipids, peptides and proteins. A major advantage of IMS over conventional histochemical techniques is its superior molecular specificity. Imaging mass spectrometry has therefore great potential for probing molecular regulations in CNS-derived tissues and cells for understanding neurodegenerative disease mechanism. The goal of this review is to familiarize the reader with the experimental workflow, instrumental developments and methodological challenges as well as to give a concise overview of the major advances and recent developments and applications of IMS-based protein and peptide profiling with particular focus on neurodegenerative diseases. This article is part of the Special Issue “Proteomics”. (Figure presented.).
  •  
15.
  • Michno, Wojciech, 1992 (författare)
  • Multimodal Chemical Imaging of Amyloid Plaque Pathology in Alzheimer’s Disease
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer’s disease (AD) is the most common form of dementia. AD has been linked to the aggregation of amyloid beta (Aβ) peptides into extracellular deposits, Aβ plaques. These are also found in cognitively unimpaired amyloid-positive (CU-AP) individuals, but these Aβ plaques are primarily diffuse in structure. In AD brains, Aβ plaques often have a dense core and a more diffuse periphery. Aβ exists in various lengths, where the 42 amino acid-long Aβ form (Aβ1-42) is considered most neurotoxic. Aβ1-42 is currently used as an AD biomarker when measured in cerebrospinal fluid or plasma. Measurements of the relative amount of different biomolecules within Aβ plaques are generally performed using antibodies. Usually, up to three molecules, can be visualized using this technique. Recently it has been shown that Aβ aggregates can have distinct 3D structures. These differences in structures can be the result of which particular Aβ peptides the aggregates are made of. Aβ aggregates may also differ between AD patients, which makes it difficult to visualize and compare Aβ plaque pathology, and poses challenges in the development of new drugs targeting Aβ aggregates. It is likely that the composition of different Aβ plaques, making them more or less diffuse, could vary depending on different Aβ peptides. This thesis presents the development of methods to study chemical factors underlying the variation between different types of Aβ plaques. These are mainly based on three advanced technologies. The first is imaging mass spectrometry, which enables the accurate separation and visualization of molecules based on their mass in brain tissue. The second is hyperspectral light microscopy, which utilizes different light wavelengths to characterize the structural properties of Aβ aggregates in different plaque types. The third is high resolution electron microscopy, which enables the visualization of individual aggregates. Furthermore, stable-isotope labelling is used to study the dynamics of Aβ plaque formation. These methods were applied to characterize the biomolecules (different Aβ peptides and lipids) between diffuse and dense structures within and between Aβ plaques in mice, AD patients and CU-AP individuals. It was demonstrated that the shorter Aβ1-40 peptide localized to the dense core, and, at least in mice, this localization appeared to be a result of Aβ plaque maturation. CU-AP-associated diffuse plaques were not the same as the AD-associated diffuse or cored plaques, when it came to the aggregation state. The chemical modification of the N-terminal part could be responsible for such structural heterogeneity, and possibly for the neurotoxicity associated with AD. Further, an altered lipid composition was identified between diffuse and dense Aβ aggregate structures. Finally, with the help of stable-isotope labelling, it was verified that Aβ plaque spread starts in the cortex and continues towards the hippocampus. This was initiated through the deposition of Aβ1-42. Shorter C-terminally truncated peptides were deposited only at a later stage. These peptides were newly produced, and did not stem from already accumulated Aβ1-42. In summary, Aβ plaque pathology is much more complex than what it is currently considered during ordinary post-mortem neuropathological assessments. It needs to be researched with the help of advanced methods, to provide us with important information about how, where and why Aβ and other biomolecular factors contribute to the development of AD.
  •  
16.
  • Michno, Wojciech, 1992, et al. (författare)
  • Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals A beta Aggregation Dependent Anionic Lipid Accumulations and Metabolism
  • 2018
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:13, s. 8130-8138
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid plaque formation constitutes one of the main pathological hallmarks of Alzheimer's disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, A beta deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric A beta into neurotoxic aggregates and the predominantly cored deposits observed in AD. The structural diversity among A beta plaques, including cored/compact- and diffuse, may be linked to their distinct A beta profile and other chemical species including neuronal lipids. We developed a novel, chemical imaging paradigm combining matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) and fluorescent amyloid staining. This multimodal imaging approach was used to probe the lipid chemistry associated with structural plaque heterogeneity in transgenic AD mice (tgAPP(Swe)) and was correlated to A beta profiles determined by subsequent laser microdissection and immunoprecipitation-mass spectrometry. Multivariate image analysis revealed an inverse localization of ceramides and their matching metabolites to diffuse and cored structures within single plaques, respectively. Moreover, phosphatidylinositols implicated in AD pathogenesis, were found to localize to the diffuse A beta structures and correlate with A beta 1-42. Further, lysophospholipids implicated in neuroinflammation were increased in all A beta deposits. The results support previous clinical findings on the importance of lipid disturbances in AD pathophysiology and associated sphingolipid processing. These data highlight the potential of multimodal imaging as a powerful technology to probe neuropathological mechanisms.
  •  
17.
  • Michno, Wojciech, 1992, et al. (författare)
  • Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1–40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology
  • 2019
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 294:17, s. 6719-6732
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid- (A) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct A species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP. To this end, we interrogated A polymorphism with amyloid conformation-sensitive dyes and a novel in situ MS paradigm for chemical characterization of hyperspectrally delineated plaque morphotypes. We found that maturation of diffuse into cored plaques correlated with increased A1-40 deposition. Using spatial in situ delineation with imaging MS (IMS), we show that A1-40 aggregates at the core structure of mature plaques, whereas A1-42 localizes to diffuse amyloid aggregates. Moreover, we observed that diffuse plaques have increased pyroglutamated Ax-42 levels in s-AD but not CU-AP, suggesting an AD pathology-related, hydrophobic functionalization of diffuse plaques facilitating A1-40 deposition. Experiments in tgAPP(Swe) mice verified that, similar to what has been observed in human brain pathology, diffuse deposits display higher levels of A1-42 and that A plaque maturation over time is associated with increases in A1-40. Finally, we found that A1-40 deposition is characteristic for cerebral amyloid angiopathy deposition and maturation in both humans and mice. These results indicate that N-terminal Ax-42 pyroglutamation and A1-40 deposition are critical events in priming and maturation of pathogenic A from diffuse into cored plaques, underlying neurotoxic plaque development in AD.
  •  
18.
  • Michno, Wojciech, 1992, et al. (författare)
  • Refining the amyloid beta peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma
  • 2021
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 159:2, s. 234-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Since its discovery, amyloid-beta (A beta) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the A beta plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific A beta peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long A beta peptide (A beta 42) in cerebrospinal fluid (CSF) was put forward as reflective of A beta peptide aggregation in the brain. With time, A beta oligomers-the proposed toxic A beta intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the A beta peptide backbone, makes the characterization of A beta aggregates and their role in AD progression challenging. In this review, we revisit the history of A beta discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the A beta peptide, and how MS is aiding the characterization of higher order A beta assemblies. Finally, we go on to present recent advances in MS approaches for characterization of A beta as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of A beta in AD research.
  •  
19.
  • Michno, Wojciech, 1992, et al. (författare)
  • Spatial Neurolipidomics at the Single Amyloid-β Plaque Level in Postmortem Human Alzheimer's Disease Brain
  • 2024
  • Ingår i: ACS CHEMICAL NEUROSCIENCE. - 1948-7193. ; 15:4, s. 877-888
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid dysregulations have been critically implicated in Alzheimer's disease (AD) pathology. Chemical analysis of amyloid-beta (A beta) plaque pathology in transgenic AD mouse models has demonstrated alterations in the microenvironment in the direct proximity of A beta plaque pathology. In mouse studies, differences in lipid patterns linked to structural polymorphism among A beta pathology, such as diffuse, immature, and mature fibrillary aggregates, have also been reported. To date, no comprehensive analysis of neuronal lipid microenvironment changes in human AD tissue has been performed. Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high-speed and spatial resolution commercial time-of-light instrument, as well as a high-mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1 mutations (PSEN1) that lead to familial forms of AD (fAD). Interrogation of the spatially resolved MSI data on a single A beta plaque allowed us to verify nearly 40 sphingolipid and phospholipid species from diverse subclasses being enriched and depleted, in relation to the A beta deposits. This included monosialo-gangliosides (GM), ceramide monohexosides (HexCer), ceramide-1-phosphates (CerP), ceramide phosphoethanolamine conjugates (PE-Cer), sulfatides (ST), as well as phosphatidylinositols (PI), phosphatidylethanolamines (PE), and phosphatidic acid (PA) species (including Lyso-forms). Indeed, many of the sphingolipid species overlap with the species previously seen in transgenic AD mouse models. Interestingly, in comparison to the animal studies, we observed an increased level of localization of PE and PI species containing arachidonic acid (AA). These findings are highly relevant, demonstrating for the first time A beta plaque pathology-related alteration in the lipid microenvironment in humans. They provide a basis for the development of potential lipid biomarkers for AD characterization and insight into human-specific molecular pathway alterations.
  •  
20.
  • Michno, Wojciech, 1992, et al. (författare)
  • Structural amyloid plaque polymorphism is associated with distinct lipid accumulations revealed by trapped ion mobility mass spectrometry imaging
  • 2022
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 160:4, s. 482-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding of Alzheimer's disease (AD) pathophysiology requires molecular assessment of how key pathological factors, specifically amyloid beta (A beta) plaques, influence the surrounding microenvironment. Here, neuronal lipids have been implicated in A beta plaque pathology, though the lipid microenvironment in direct proximity to A beta plaques is still not fully resolved. A further challenge is the microenvironmental molecular heterogeneity, across structurally polymorphic A beta features, such as diffuse, immature, and mature, fibrillary aggregates, whose resolution requires the integration of advanced, multimodal chemical imaging tools. Herein, we used matrix-assisted laser desorption/ionization trapped ion mobility spectrometry time-of-flight based mass spectrometry imaging (MALDI TIMS TOF MSI) in combination with hyperspectral confocal microscopy to probe the lipidomic microenvironment associated with structural polymorphism of A beta plaques in transgenic Alzheimer's disease mice (tgAPP(SWE)). Using on tissue and ex situ validation, TIMS MS/MS facilitated unambiguous identification of isobaric lipid species that showed plaque pathology-associated localizations. Integrated multivariate imaging data analysis revealed multiple, A beta plaque-enriched lipid patterns for gangliosides (GM), phosphoinositols (PI), phosphoethanolamines (PE), and phosphatidic acids (PA). Conversely, sulfatides (ST), cardiolipins (CL), and polyunsaturated fatty acid (PUFA)-conjugated phosphoserines (PS), and PE were depleted at plaques. Hyperspectral amyloid imaging further delineated the unique distribution of PA and PE species to mature plaque core regions, while PI, LPI, GM2 and GM3 lipids localized to immature A beta aggregates present within the periphery of A beta plaques. Finally, we followed AD pathology-associated lipid changes over time, identifying plaque- growth and maturation to be characterized by peripheral accumulation of PI (18:0/22:6). Together, these data demonstrate the potential of multimodal imaging approaches to overcome limitations associated with conventional advanced MS imaging applications. This allowed for the differentiation of both distinct lipid components in a complex micro-environment as well as their correlation to disease-relevant amyloid plaque polymorphs.
  •  
21.
  • Wehrli, Patrick M., et al. (författare)
  • Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data.
  • 2019
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305. ; 30:11, s. 2278-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested. We here present a data processing and analysis pipeline for IMS data interrogation, processing and ROI annotation, segmentation, and validation. This workflow includes (1) objective evaluation of processing methods for IMS datasets based on multivariate analysis using PCA. This was then followed by (2) ROI annotation and classification through region-based active contours (AC) segmentation based on the PCA component scores matrix. This provided class information for subsequent (3) OPLS-DA modeling to evaluate IMS data processing based on the quality metrics of their respective multivariate models and for robust quantification of ROI-specific signal localization. This workflow provides an unbiased strategy for sensitive annotation of anatomical regions of interest combined with quantitative comparison of processing procedures for multivariate analysis allowing robust ROI annotation and quantification of the associated molecular histology.
  •  
22.
  • Wehrli, Patrick M., et al. (författare)
  • Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution
  • 2023
  • Ingår i: Jacs Au. - : American Chemical Society (ACS). - 2691-3704. ; 3:3, s. 762-774
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 mu m). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method's potential through its application toward delineating chemical traits of Alzheimer's disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (A beta) plaque-associated co-localization of lipids and A beta peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in A beta pathogenicity.
  •  
23.
  • Zanni, Giulia, et al. (författare)
  • Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium (Li) is a potent mood stabilizer and displays neuroprotective and neurogenic properties. Despite extensive investigations, the mechanisms of action have not been fully elucidated, especially in the juvenile, developing brain. Here we characterized lithium distribution in the juvenile mouse brain during 28 days of continuous treatment that result in clinically relevant serum concentrations. By using Time-of-Flight Secondary Ion Mass Spectrometry-(ToF-SIMS) based imaging we were able to delineate temporospatial lithium profile throughout the brain and concurrent distribution of endogenous lipids with high chemical specificity and spatial resolution. We found that Li accumulated in neurogenic regions and investigated the effects on hippocampal neurogenesis. Lithium increased proliferation, as judged by Ki67-immunoreactivity, but did not alter the number of doublecortin-positive neuroblasts at the end of the treatment period. Moreover, ToF-SIMS revealed a steady depletion of sphingomyelin in white matter regions during 28d Li-treatment, particularly in the olfactory bulb. In contrast, cortical levels of cholesterol and choline increased over time in Li-treated mice. This is the first study describing ToF-SIMS imaging for probing the brain-wide accumulation of supplemented Li in situ. The findings demonstrate that this technique is a powerful approach for investigating the distribution and effects of neuroprotective agents in the brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23
Typ av publikation
tidskriftsartikel (21)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Michno, Wojciech, 19 ... (23)
Hanrieder, Jörg, 198 ... (21)
Blennow, Kaj, 1958 (16)
Zetterberg, Henrik, ... (15)
Kaya, Ibrahim (6)
Nilsson, Peter (4)
visa fler...
Hammarström, Per (4)
Nyström, Sofie (4)
Syvänen, Stina (4)
Koutarapu, Srinivas (4)
Brinkmalm, Gunnar (3)
Sehlin, Dag, 1976- (3)
Hopf, C. (3)
Minta, Karolina (3)
Ge, Junyue, 1993 (3)
Jha, Durga (3)
Thor, Stefan (2)
Lashley, Tammaryn (2)
Enzlein, T. (2)
Starkenberg, Annika (2)
Henkel, C. (1)
Wood, J. (1)
Pettersson, Jean (1)
Fernandez-Rodriguez, ... (1)
Jonsson, Maria (1)
Karlsson, Oskar (1)
Sjövall, Peter, 1961 (1)
Ryan, N. S. (1)
Lashley, T. (1)
Blomgren, K (1)
Nilsson, R (1)
Camacho, Rafael (1)
Dreos, Ambra, 1987 (1)
Jonson, Maria (1)
Kushnir, M. M. (1)
Stringer, Katie (1)
De Strooper, B. (1)
Edwards, F. A. (1)
Carlred, Louise M, 1 ... (1)
Escrig, S (1)
Meibom, A (1)
Tjärnlund-Wolf, Anna ... (1)
Di Martino, E (1)
Ransome, Yusuf (1)
Cordes, J. (1)
Munteanu, B. (1)
Serneels, L. (1)
Wolf, I. (1)
Chavez-Gutierrez, L. (1)
Meier, Silvio R. (1)
visa färre...
Lärosäte
Göteborgs universitet (23)
Chalmers tekniska högskola (8)
Uppsala universitet (6)
Linköpings universitet (4)
Karolinska Institutet (3)
RISE (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (10)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy