SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miley G.) "

Sökning: WFRF:(Miley G.)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Haarlem, M. P., et al. (författare)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
2.
  • Shimwell, T. W., et al. (författare)
  • The LOFAR Two-metre Sky Survey: V. Second data release
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 μJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 μJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset.
  •  
3.
  • Orrù, E., et al. (författare)
  • Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620 : A fresh view on a restarted AGN and doubeltjes
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in active galactic nuclei (AGN), as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts.Aims. Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view.Methods. We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources.Results. The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m-2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1′.Conclusions. The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of wide-field imaging (e.g., time and frequency variation of the beam, directional dependent calibration errors) can be solved using LOFAR commissioning data, thus demonstrating the potential of the full LOFAR telescope to discover millions of powerful AGN at redshift z ~ 1.
  •  
4.
  • De Gasperin, F., et al. (författare)
  • M 87 at metre wavelengths: the LOFAR picture
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 547, s. article no. 56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4x10(9) M-circle dot, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15-30 MHz, 30-77 MHz and 116-162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz-10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intra-cluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radio-spectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of similar or equal to 10 mu G, which increases to similar or equal to 13 mu G in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of similar or equal to 40 Myr, which in turn provides a jet kinetic power of 6-10 x 10(44) erg s(-1).
  •  
5.
  • Shimwell, T. W., et al. (författare)
  • The LOFAR Two-metre Sky Survey: II. First data release
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Forskningsöversikt (refereegranskat)abstract
    • The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168 MHz survey of the entire northern sky for which observations are now 20% complete. We present our first full-quality public data release. For this data release 424 square degrees, or 2% of the eventual coverage, in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00′00″ to 57°00′00″) were mapped using a fully automated direction-dependent calibration and imaging pipeline that we developed. A total of 325 694 sources are detected with a signal of at least five times the noise, and the source density is a factor of ∼10 higher than the most sensitive existing very wide-area radio-continuum surveys. The median sensitivity is S144 MHz = 71 μJy beam -1 and the point-source completeness is 90% at an integrated flux density of 0.45 mJy. The resolution of the images is 6″ and the positional accuracy is within 0.2″. This data release consists of a catalogue containing location, flux, and shape estimates together with 58 mosaic images that cover the catalogued area. In this paper we provide an overview of the data release with a focus on the processing of the LOFAR data and the characteristics of the resulting images. In two accompanying papers we provide the radio source associations and deblending and, where possible, the optical identifications of the radio sources together with the photometric redshifts and properties of the host galaxies. These data release papers are published together with a further ∼20 articles that highlight the scientific potential of LoTSS.
  •  
6.
  • van Weeren, R. J., et al. (författare)
  • First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 543, s. Article Number: A43 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 +/- 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 +/- 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last similar to 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.
  •  
7.
  • Penston, M. V., et al. (författare)
  • The extended narrow line region of NGC 4151. I. Emission line ratios and their implications
  • 1990
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 236:1, s. 53-6262
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the extended narrow line region (ENLR) of that galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically undisturbed gas in the disc of the galaxy which is illuminated by an ionizing continuum stronger by a factor of 13 than a power law interpolated between observed ultraviolet and X-ray fluxes. Explanations of this apparent excess include a hot thermal continuum, time variations and an anisotropic radiation field. The authors give reasons for favouring anisotropy which might be caused by shadowing by a thick accretion disc or by relativistic beaming. Shadowing by a molecular torus is unlikely, given the absence of an infrared signal from the reradiated flux absorbed by any torus. Anisotropy would have important implications for the bolometric luminosity and nature of active galactic nuclei
  •  
8.
  • Rottgering, H., et al. (författare)
  • The "Sausage" and "Toothbrush" clusters of galaxies and the prospects of LOFAR observations of clusters of galaxies
  • 2013
  • Ingår i: Astronomische Nachrichten. - : Wiley. - 0004-6337 .- 1521-3994. ; 334:4-5, s. 333-337
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the Low Frequency Radio Array, is a new pan-European radio telescope that is almost fully operational. One of its main drivers is to make deep images of the low frequency radio sky. To be able to do this a number of challenges need to be addressed. These include the high data rates, removal of radio frequency interference, calibration of the beams and correcting for the corrupting influence of the ionosphere. One of the key science goals is to study merger shocks, particle acceleration mechanisms and the structure of magnetic fields in nearby and distant merging clusters. Recent studies with the GMRT and WSRT radio telescopes of the "Sausage" and the "Toothbrush" clusters have given a very good demonstration of the power of radio observations to study merging clusters. Recently we discovered that both clusters contain relic and halo sources, large diffuse regions of radio emission not associated with individual galaxies. The 2 Mpc northern relic in the Sausage cluster displays highly aligned magnetic fields and and exhibits a strong spectral index gradient that is a consequence of cooling of the synchrotron emitting particles in the post-shock region. We have argued that these observations provide strong evidence that shocks in merging clusters are capable of accelerating particles. For the Toothbrush cluster we observe a puzzling linear relic that extends over 2 Mpc. The proposed scenario is that a triple-merger can lead to such a structure. With LOFAR's sensitivity it will not only be possible to trace much weaker shocks, but also to study those shocks due to merging clusters up to redshifts of at least one. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  •  
9.
  • van Weeren, R. J., et al. (författare)
  • LOFAR Facet Calibration
  • 2016
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 223:1
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing highquality deep images is challenging due to the presence of direction-dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction-dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at similar to 5. resolution, meeting the specifications of the LOFAR Tier-1 northern survey.
  •  
10.
  • van Weeren, R. J., et al. (författare)
  • LOFAR, VLA, AND CHANDRA OBSERVATIONS OF THE TOOTHBRUSH GALAXY CLUSTER
  • 2016
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 818:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present deep LOFAR observations between 120 and 181 MHz of the "Toothbrush" (RX J0603.3+ 4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of alpha = -0.8 +/- 0.1 at the northern edge of the main radio relic, steepening toward the south to alpha approximate to-2. The spectral index of the radio halo is remarkably uniform (alpha = -1.16, with an intrinsic scatter of
  •  
11.
  • Rottgering, H., et al. (författare)
  • LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters
  • 2011
  • Ingår i: Journal of Astrophysics and Astronomy. - : Springer Science and Business Media LLC. - 0250-6335 .- 0973-7758. ; 32:4, s. 557-566
  • Tidskriftsartikel (refereegranskat)abstract
    • At very low frequencies, the new pan-European radio telescope LOFAR is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. The revolutionary APERTIF-phased arrays that are about to be installed on the Westerbork radio telescope (WSRT) will dramatically increase the survey speed for the WSRT. Combined surveys with these two facilities will deeply chart the northern sky over almost two decades in radio frequency from similar to 15 up to 1400 MHz. Here we briefly describe some of the capabilities of these new facilities and what radio surveys are planned to study fun-damental issues related to the formation and evolution of galaxies and clusters of galaxies. In the second part we briefly review some recent observational results directly showing that diffuse radio emission in clusters traces shocks due to cluster mergers. As these diffuse radio sources are relatively bright at low frequencies, LOFAR should be able to detect thousands of such sources up to the epoch of cluster formation. This will allow addressing many question about the origin and evolution of shocks and magnetic fields in clusters. At the end we briefly review some of the first and very preliminary LOFAR results on clusters.
  •  
12.
  • Shimwell, T. W., et al. (författare)
  • The LOFAR Two-metre Sky Survey: I. Survey description and preliminary data release
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 598, s. Art no A104-
  • Tidskriftsartikel (refereegranskat)abstract
    • The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120-168 MHz imaging survey that will eventually cover the entire northern sky. Each of the 3170 pointings will be observed for 8 h, which, at most declinations, is sufficient to produce ~5? resolution images with a sensitivity of ~100 ?Jy/beam and accomplish the main scientific aims of the survey, which are to explore the formation and evolution of massive black holes, galaxies, clusters of galaxies and large-scale structure. Owing to the compact core and long baselines of LOFAR, the images provide excellent sensitivity to both highly extended and compact emission. For legacy value, the data are archived at high spectral and time resolution to facilitate subarcsecond imaging and spectral line studies. In this paper we provide an overview of the LoTSS. We outline the survey strategy, the observational status, the current calibration techniques, a preliminary data release, and the anticipated scientific impact. The preliminary images that we have released were created using a fully automated but direction-independent calibration strategy and are significantly more sensitive than those produced by any existing large-Area low-frequency survey. In excess of 44 000 sources are detected in the images that have a resolution of 25?, typical noise levels of less than 0.5 mJy/beam, and cover an area of over 350 square degrees in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00?00? to 57°00?00?).
  •  
13.
  • Stappers, B. W., et al. (författare)
  • Observing pulsars and fast transients with LOFAR
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 530
  • Tidskriftsartikel (refereegranskat)abstract
    • Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric "radio window": 10-240 MHz, that will greatly facilitate observing pulsars at low radio frequencies. Through the huge collecting area, long baselines, and flexible digital hardware, it is expected that LOFAR will revolutionize radio astronomy at the lowest frequencies visible from Earth. LOFAR is a next-generation radio telescope and a pathfinder to the Square Kilometre Array (SKA), in that it incorporates advanced multi-beaming techniques between thousands of individual elements. We discuss the motivation for low-frequency pulsar observations in general and the potential of LOFAR in addressing these science goals. We present LOFAR as it is designed to perform high-time-resolution observations of pulsars and other fast transients, and outline the various relevant observing modes and data reduction pipelines that are already or will soon be implemented to facilitate these observations. A number of results obtained from commissioning observations are presented to demonstrate the exciting potential of the telescope. This paper outlines the case for low frequency pulsar observations and is also intended to serve as a reference for upcoming pulsar/fast transient science papers with LOFAR.
  •  
14.
  • Morabito, L. K., et al. (författare)
  • Discovery of Carbon Radio Recombination Lines in M82
  • 2014
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 795:2, s. Art. no. L33-
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon radio recombination lines (RRLs) at low frequencies (less than or similar to 500 MHz) trace the cold, diffuse phase of the interstellar medium, which is otherwise difficult to observe. We present the detection of carbon RRLs in absorption in M82 with the Low Frequency Array in the frequency range of 48-64 MHz. This is the first extragalactic detection of RRLs from a species other than hydrogen, and below 1 GHz. Since the carbon RRLs are not detected individually, we cross-correlated the observed spectrum with a template spectrum of carbon RRLs to determine a radial velocity of 219 km s(-1). Using this radial velocity, we stack 22 carbon-alpha transitions from quantum levels n = 468-508 to achieve an 8.5 sigma detection. The absorption line profile exhibits a narrow feature with peak optical depth of 3x10(-3) and FWHM of 31 km s(-1). Closer inspection suggests that the narrow feature is superimposed on a broad, shallow component. The total line profile appears to be correlated with the 21 cm Hi line profile reconstructed from Hi absorption in the direction of supernova remnants in the nucleus. The narrow width and centroid velocity of the feature suggests that it is associated with the nuclear starburst region. It is therefore likely that the carbon RRLs are associated with cold atomic gas in the direction of the nucleus of M82.
  •  
15.
  • Varenius, Eskil, 1986, et al. (författare)
  • Subarcsecond international LOFAR radio images of the M82 nucleus at 118 MHz and 154 MHz
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. Art. no. A114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nuclear starburst in the nearby galaxy M82 provides an excellent laboratory for understanding the physics of star formation. This galaxy has been extensively observed in the past, revealing tens of radio bright compact objects embedded in a diffuse free-free absorbing medium. Our understanding of the structure and physics of this medium in M82 can be greatly improved by high-resolution images at tow frequencies where the effects of free-free absorption are most prominent. Aims. The aims of this study are, firstly, to demonstrate imaging using international baselines of the Low Frequency Array (LOFAR), and secondly, to constrain low frequency spectra of compact and diffuse emission in the central starburst region of M82 via high resolution radio imaging at low frequencies. Methods. The international LOFAR telescope was used to observe M82 at 110-126 MHz and 146-1621\4Hz. Images were obtained using standard techniques from very long baseline interferometry. images were obtained at each frequency range: one only using international baselines, and one only using the longest Dutch (remote) baselines. Results. The 154 MHz image obtained using international baselines is a new imaging record in terms of combined image resolution (0.3") and sensitivity (sigma = 0.15 mIy/beath) at low frequencies (
  •  
16.
  • Williams, W. L., et al. (författare)
  • LOFAR 150-MHz observations of the Bootes field: catalogue and source counts
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 460:3, s. 2385-2412
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first wide area (19 deg(2)), deep (a parts per thousand 120-150 mu Jy beam(-1)), high-resolution (5.6 x 7.4 arcsec) LOFAR High Band Antenna image of the Bootes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg(2), with a peak flux density threshold of 5 sigma. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
  •  
17.
  • De Gasperin, F., et al. (författare)
  • Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • The four persistent radio sources in the northern sky with the highest flux density at metre wavelengths are Cassiopeia A, Cygnus A, Taurus A, and Virgo A; collectively they are called the A-team. Their flux densities at ultra-low frequencies (< 100 MHz) can reach several thousands of janskys, and they often contaminate observations of the low-frequency sky by interfering with image processing. Furthermore, these sources are foreground objects for all-sky observations hampering the study of faint signals, such as the cosmological 21 cm line from the epoch of reionisation. Aims. We aim to produce robust models for the surface brightness emission as a function of frequency for the A-team sources at ultra-low frequencies. These models are needed for the calibration and imaging of wide-area surveys of the sky with low-frequency interferometers. This requires obtaining images at an angular resolution better than 15″ with a high dynamic range and good image fidelity. Methods. We observed the A-team with the Low Frequency Array (LOFAR) at frequencies between 30 MHz and 77 MHz using the Low Band Antenna system. We reduced the datasets and obtained an image for each A-team source. Results. The paper presents the best models to date for the sources Cassiopeia A, Cygnus A, Taurus A, and Virgo A between 30 MHz and 77 MHz. We were able to obtain the aimed resolution and dynamic range in all cases. Owing to its compactness and complexity, observations with the long baselines of the International LOFAR Telescope will be required to improve the source model for Cygnus A further.
  •  
18.
  • Shulevski, A., et al. (författare)
  • AGN duty cycle estimates for the ultra-steep spectrum radio relic VLSS J1431.8+1331
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583, s. A89-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Steep spectrum radio sources associated with active galactic nuclei (AGN) may contain remnants of past AGN activity episodes. Studying these sources gives us insight into the AGN activity history. Novel instruments like the LOw Frequency ARray (LOFAR) are enabling studies of these fascinating structures to be made at tens to hundreds of MHz with sufficient resolution to analyse their complex morphology. Aims. Our goal is to characterize the integrated and resolved spectral properties of VESS J1431+1331 and estimate source ages based on synchrotron radio emission models, thus putting constraints on the AGN duty cycle. Methods. Using a broad spectral coverage, we have derived spectral and curvature maps, and used synchrotron ageing models to determine the time elapsed from the last time the source plasma was energized. We used LOFAR, Giant Metrewave Radio Telescope (GMRT) and Jansky Very Large Array (VLA) data. Results. We confirm the morphology and the spectral index values found in previous studies of this object. Based on our ageing analysis, we infer that the AGN that created this source currently has very low levels of activity or that it is switched off. The derived ages for the larger source component range from around 60 to 130 Myr, hinting that the AGN activity decreased or stopped around 60 Myr ago. We observe that the area around the faint radio core located in the larger source component is the youngest, while the overall age of the smaller source component shows it to be the oldest part of the source. Conclusions. Our analysis suggests that VLSS J1431.8+1331 is an intriguing, two-component source. The larger component seems to host a faint radio core, suggesting that the source may be an AGN radio relic. The spectral index we observe from the smaller component is distinctly flatter at lower frequencies than the spectral index of the larger component, suggesting the possibility that the smaller component may be a shocked plasma bubble. From. the integrated source spectrum, we deduce that its shape and slope can be used as tracers of the activity history of this type of steep spectrum radio source. We discuss the implications this conclusion has for future studies of radio sources having similar characteristics.
  •  
19.
  • Emonts, B., et al. (författare)
  • A CO-rich merger shaping a powerful and hyperluminous infrared radio galaxy at z=2: the Dragonfly Galaxy
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 451:1, s. 1025-1035
  • Tidskriftsartikel (refereegranskat)abstract
    • In the low-redshift Universe, the most powerful radio sources are often associated with gasrich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich ('wet') merger associated with a powerful radio galaxy at a redshift of z similar to 2. This radio galaxy, MRC 0152-209, is the most infrared-luminous high-redshift radio galaxy known in the Southern hemisphere. Using the Australia Telescope Compact Array, we obtained highresolution CO(1-0) data of cold molecular gas, which we complement with Hubble Space Telescope (HS7)IWide Field Planetaiy Camera 2 (WFPC2) imaging and William Herschel Telescope long-slit spectroscopy. We find that, while roughly M-H2 x 10(10) Me of molecular gas coincides with the central host galaxy, another M-H2 similar to 3 x 10(10) Me is spread across a total extent of'-60 kpc. Most of this widespread CO(1-0) appears to follow prominent tidal features visible in the rest-frame near-UV HSTIWFPC2 imaging. Lya emission shows an excess over He II, but a deficiency over LIR, which is likely the result of photoionization by enhanced but very obscured star formation that was triggered by the merger. In terms of feedback, the radio source is aligned with widespread CO(1-0) emission, which suggests that there is a physical link between the propagating radio jets and the presence of cold molecular gas on scales of the galaxy's halo. Its optical appearance, combined with the transformational stage at which we witness the evolution of MRC 0152-209, leads us to adopt the name 'Dragonfly Galaxy'.
  •  
20.
  • Morabito, L., et al. (författare)
  • Sub-arcsecond imaging with the International LOFAR Telescope: I. Foundational calibration strategy and pipeline
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ∼2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ∼1.5° away, while phase solution transferral works well over ∼1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ∼0.3″ ×0.2″ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ∼80-300 μJy bm-1 image rms noise, which is dependent on the distance from the phase centre; typical values are ∼90 μJy bm-1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ∼ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit.
  •  
21.
  • Morganti, R., et al. (författare)
  • Continuum surveys with LOFAR and synergy with future large surveys in the 1 – 2 GHz band
  • 2009
  • Ingår i: Proceedings of Science. - 1824-8039. ; 89
  • Konferensbidrag (refereegranskat)abstract
    • Radio astronomy is entering the era of large surveys. This paper describes the plans for wide surveys with the LOw Frequency ARray (LOFAR) and their synergy with large surveys at higher frequencies (in particular in the 1 – 2 GHz band) that will be possible using future facilities like Apertif or ASKAP. The LOFAR Survey Key Science Project aims at conducting large-sky surveys at 15, 30, 60, 120 and 200 MHz taking advantage of the wide instantaneous field of view and of the unprecedented sensitivity of this instrument.
  •  
22.
  • Balanzategui, Daniel, et al. (författare)
  • Wood Anatomy of Douglas-Fir in Eastern Arizona and Its Relationship With Pacific Basin Climate
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendroclimatic reconstructions, which are a well-known tool for extending records of climatic variability, have recently been expanded by using wood anatomical parameters. However, the relationships between wood cellular structures and large-scale climatic patterns, such as El Nino-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), are still not completely understood, hindering the potential for wood anatomy as a paleoclimatic proxy. To better understand the teleconnection between regional and local climate processes in the western United States, our main objective was to assess the value of these emerging tree-ring parameters for reconstructing climate dynamics. Using Confocal Laser Scanning Microscopy, we measured cell lumen diameter and cell wall thickness (CWT) for the period 1966 to 2015 in five Douglas-firs [Pseudotsuga menziesii (Mirb.) Franco] from two sites in eastern Arizona (United States). Dendroclimatic analysis was performed using chronologies developed for 10 equally distributed sectors of the ring and daily climatic records to identify the strongest climatic signal for each sector. We found that lumen diameter in the first ring sector was sensitive to previous fall-winter temperature (September 25(th) to January 23(rd)), while a precipitation signal (October 27(th) to February 13(th)) persisted for the entire first half of the ring. The lack of synchronous patterns between trees for CWT prevented conducting meaningful climate-response analysis for that anatomical parameter. Time series of lumen diameter showed an anti-phase relationship with the Southern Oscillation Index (a proxy for ENSO) at 10 to 14year periodicity and particularly in 1980-2005, suggesting that chronologies of wood anatomical parameters respond to multidecadal variability of regional climatic modes. Our findings demonstrate the potential of cell structural characteristics of southwestern United States conifers for reconstructing past climatic variability, while also improving our understanding of how large-scale ocean-atmosphere interactions impact local hydroclimatic patterns.
  •  
23.
  • Holmlid, Leif, 1942, et al. (författare)
  • Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets
  • 2009
  • Ingår i: Laser and Particle Beams. ; 27, s. 529-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Clusters of condensed deuterium of densities up to 10^29 cm-3 in pores in solid oxide crystals were confirmed from time-offlight mass spectrometry measurements. Based on these facts, a schematic outline and possible conclusions of expectable generalizations are presented, which may lead to a simplification of laser driven fusion energy including new techniques for preparation of targets for application in experiments of the NIF type, but also for modified fast igniter experiments using proton or electron beams or side-on ignition of low compressed solid fusion fuel.
  •  
24.
  •  
25.
  • Morabito, L. K., et al. (författare)
  • LOFAR VLBI studies at 55 MHz of 4C 43.15, a z=2.4 radio galaxy
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 461:3, s. 2676-2687
  • Tidskriftsartikel (refereegranskat)abstract
    • The correlation between radio spectral index and redshift has been exploited to discover high-redshift radio galaxies, but its underlying cause is unclear. It is crucial to characterize the particle acceleration and loss mechanisms in high-redshift radio galaxies to understand why their radio spectral indices are steeper than their local counterparts. Low-frequency information on scales of similar to 1 arcsec are necessary to determine the internal spectral index variation. In this paper we present the first spatially resolved studies at frequencies below 100 MHz of the z = 2.4 radio galaxy 4C 43.15 which was selected based on its ultrasteep spectral index (alpha
  •  
26.
  •  
27.
  • Snellen, I., et al. (författare)
  • Future investigations of GPS and CSS radio sources with LOFAR
  • 2009
  • Ingår i: Astronomische Nachrichten. - : Wiley. - 0004-6337 .- 1521-3994. ; 330:2-3, s. 297-300
  • Tidskriftsartikel (refereegranskat)abstract
    • In the next few years, the Low Frequency Array (LOFAR) will open up one of the last astronomically unexplored wavelength regimes. While the LOFAR core is currently being erected in the Netherlands, its outer stations will cover a large part of Europe, resulting in an unprecedented angular resolution at > meter wavelengths. Next to many other exciting scientific endeavours, LOFAR will be the first instrument to probe the low frequency spectra of Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. It will give new insights into their absorption processes, and probe associated extended emission (possibly linked to earlier epochs of activity) in these enigmatic class of young active galactic nuclei. Furthermore, LOFAR will be sensitive to possibly the most distant GPS and CSS sources, of which their spectral turnovers have redshifted down to the lowest observable radio frequencies.
  •  
28.
  • Van Groningen, E., et al. (författare)
  • One-sided jets in extragalactic radiosources
  • 1980
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 90:1-2, s. L7-L9L9
  • Tidskriftsartikel (refereegranskat)abstract
    • Some explanations for the existence of one-sided jets in symmetrical extended radio sources are discussed. It is shown that in the case of the quasar 4C32.69, a relativistic Doppler interpretation is improbable. Observational constraints on a model involving anisotropic radiation are also examined. This model cannot be ruled out, although non-relativistic interpretations of one-sided jets are most likely
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy