SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miliotis T) "

Sökning: WFRF:(Miliotis T)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adingupu, D. D., et al. (författare)
  • SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob(-/-) mice
  • 2019
  • Ingår i: Cardiovascular Diabetology. - : Springer Science and Business Media LLC. - 1475-2840. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob(-/-) mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.MethodsLean, ob/ob(-/-) untreated and ob/ob(-/-) treated with SGLT2i were followed for 10weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.ResultsSodium-glucose cotransporter 2 inhibitors treatment of ob/ob(-/-) animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.ConclusionsSodium-glucose cotransporter 2 inhibitors treatment of ob/ob(-/-) mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
  •  
2.
  •  
3.
  • Eriksson, Jan W., et al. (författare)
  • Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:9, s. 1923-1934
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The EFFECT-II study aimed to investigate the effects of dapagliflozin and omega-3 (n-3) carboxylic acids (OM-3CA). individually or combined, on liver fat content in individuals with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Methods This randomised placebo-controlled double-blind parallel-group study was performed at five clinical research centres at university hospitals in Sweden. 84 participants with type 2 diabetes and NAFLD were randomly assigned 1:1:1:1 to four treatments by a centralised randomisation system, and all participants as well as investigators and staff involved in the study conduct and analyses were blinded to treatments. Each group received oral doses of one of the following: 10 mg dapagliflozin (n = 21). 4 g OM3-CA (n = 20), a combination of both (n = 22) or placebo (n = 21). The primary endpoint was liver fat content assessed by MRI (proton density fat fraction [PDFF]) and, in addition, total liver volume and markers of glucose and lipid metabolism as well as of hepatocyte injury and oxidative stress were assessed at baseline and after 12 weeks of treatment (completion of the trial). Results Participants had a mean age of 65.5 years (SD 5.9), BMI 31.2 kg/m(2) (3.5) and liver PDFF 18% (9.3). All active treatments significantly reduced liver PDFF from baseline, relative changes: OM-3CA, -15%; dapagliflozin, -13%; OM-3CA + dapagliflozin, -21%. Only the combination treatment reduced liver PDFF (p = 0.046) and total liver fat volume (relative change, -24%,p = 0.037) in comparison with placebo. There was an interaction between the PNPLA31148M polymorphism and change in liver PDFF in the active treatment groups (p = 0.03). Dapagliflozin monotherapy, but not the combination with OM-3CA, reduced the levels of hepatocyte injury biomarkers, including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transfcrase (gamma-GT), cytokeratin (CK) 18-M30 and CK 18-M65 and plasma fibroblast growth factor 21 (FGF21). Changes in gamma-GT correlated with changes in liver PDFF (rho = 0.53, p = 0.02). Dapagliflozin alone and in combination with OM-3CA improved glucose control and reduced body weight and abdominal fat volumes. Fatty acid oxidative stress biomarkers were not affected by treatments. There were no new or unexpected adverse events compared with previous studies with these treatments. Conclusions/interpretation Combined treatment with dapagliflozin and OM-3CA significantly reduced liver fat content. Dapagliflozin monotherapy reduced all measured hepatocyte injury biomarkers and FGF21, suggesting a disease-modifying effect in NAFLD.
  •  
4.
  • Hage, C., et al. (författare)
  • Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients
  • 2020
  • Ingår i: Esc Heart Failure. - : Wiley. - 2055-5822. ; 7:4, s. 1534-1546
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims In heart failure (HF) with preserved ejection fraction (HFpEF), microvascular inflammation is proposed as an underlying mechanism. Myeloperoxidase (MPO) is associated with vascular dysfunction and prognosis in congestive HF. Methods and results MPO, MPO-related biomarkers, and echocardiography were assessed in 86 patients, 4-8 weeks after presentation with acute HF (EF >= 45%), and in 46 healthy controls. Patients were followed up for median 579 days (Q1;Q3 276;1178) regarding the composite endpoint all-cause mortality or HF hospitalization. Patients were 73 years old, 51% were female, EF was 64% (Q1;Q3 58;68), E/e ' was ratio 10.8 (8.3;14.0), and left atrial volume index (LAVI) was 43 mL/m(2) (38;52). Controls were 60 (57;62) years old (vs. patients; P < 0.001), 24% were female (P = 0.005), and left ventricular EF was 63% (59;66; P = 0.790). MPO was increased in HFpEF compared with controls, 101 (81;132) vs. 86 (74;101 ng/mL, P = 0.015), as was uric acid 369 (314;439) vs. 289 (252;328 mu mol/L, P < 0.001), calprotectin, asymmetric dimethyl arginine (ADMA), and symmetric dimethyl arginine (SDMA), while arginine was decreased. MPO correlated with uric acid (r = 0.26; P = 0.016). In patients with E/e ' > 14, uric acid and SDMA were elevated (421 vs. 344 mu M, P = 0.012; 0.54 vs. 0.47 mu M, P = 0.039, respectively), and MPO was 121 vs. 98 ng/mL (P = 0.090). The ratios of arginine/ADMA (112 vs. 162; P < 0.001) and ADMA/SDMA (1.36 vs. 1.17; P = 0.002) were decreased in HFpEF patients, suggesting reduced NO availability and increased enzymatic clearance of ADMA, respectively. Uric acid independently predicted the endpoint [hazard ratio (HR) 3.76 (95% CI 1.19-11.85; P = 0.024)] but not MPO [HR 1.48 (95% CI 0.70-3.14; P = 0.304)] or the other biomarkers. Conclusions In HFpEF, MPO-dependent oxidative stress reflected by uric acid and calprotectin is increased, and SDMA is associated with diastolic dysfunction and uric acid with outcome. This suggests microvascular neutrophil involvement mirroring endothelial dysfunction, a central component of the HFpEF syndrome and a potential treatment target.
  •  
5.
  • Karlsson, Cecilia, 1968, et al. (författare)
  • Identification of Proteins Associated with the Early Restoration of Insulin Sensitivity After Biliopancreatic Diversion
  • 2020
  • Ingår i: Journal of Clinical Endocrinology & Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 105:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Insulin resistance (IR) is a risk factor for type 2 diabetes, diabetic kidney disease, cardiovascular disease and nonalcoholic steatohepatitis. Biliopancreatic diversion (BPD) is the most effective form of bariatric surgery for improving insulin sensitivity. Objective: To identify plasma proteins correlating with the early restoration of insulin sensitivity after BPD. Design: Prospective single-center study including 20 insulin-resistant men with morbid obesity scheduled for BPD. Patient characteristics and blood samples were repeatedly collected from baseline up to 4 weeks postsurgery. IR was assessed by homeostatic model assessment for insulin resistance (HOMA-IR), Matsuda Index, and by studying metabolic profiles during meal tolerance tests. Unbiased proteomic analysis was performed to identify plasma proteins altered by BPD. Detailed plasma profiles were made on a selected set of proteins by targeted multiple reaction monitoring mass spectrometry (MRM/MS). Changes in plasma proteome were evaluated in relation to metabolic and inflammatory changes. Results: BPD resulted in improved insulin sensitivity and reduced body weight. Proteomic analysis identified 29 proteins that changed following BPD. Changes in plasma levels of afamin, apolipoprotein A-IV (ApoA4), and apolipoprotein A-II (ApoA2) correlated significantly with changes in IR. Conclusion: Circulating levels of afamin, ApoA4, and ApoA2 were associated with and may contribute to the rapid improvement in insulin sensitivity after BPD.
  •  
6.
  • Liu, K., et al. (författare)
  • Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In terms of lipid nanoparticle (LNP) engineering, the relationship between particle composition, delivery efficacy, and the composition of the biocoronas that form around LNPs, is poorly understood. To explore this we analyze naturally efficacious biocorona compositions using an unbiased screening workflow. First, LNPs are complexed with plasma samples, from individual lean or obese male rats, and then functionally evaluated in vitro. Then, a fast, automated, and miniaturized method retrieves the LNPs with intact biocoronas, and multiomics analysis of the LNP-corona complexes reveals the particle corona content arising from each individual plasma sample. We find that the most efficacious LNP-corona complexes were enriched with high-density lipoprotein (HDL) and, compared to the commonly used corona-biomarker Apolipoprotein E, corona HDL content was a superior predictor of in-vivo activity. Using technically challenging and clinically relevant lipid nanoparticles, these methods reveal a previously unreported role for HDL as a source of ApoE and, form a framework for improving LNP therapeutic efficacy by controlling corona composition. ApoE is known to be important for lipid nanoparticle function. Here, the authors shows that efficacious coronal ApoE originates from high-density lipoprotein (HDL) particles and, enhances hepatic delivery, making HDL a superior biomarker for lipid nanoparticle potency.
  •  
7.
  • Miliotis, T., et al. (författare)
  • Analysis of regulatory phosphorylation sites in ZAP-70 by capillary high-performance liquid chromatography coupled to electrospray ionization or matrix-assisted laser desorption ionization time-of-flight mass spectrometry
  • 2001
  • Ingår i: Journal of Chromatography. B, Biomedical Sciences and Applications. - : Elsevier BV. - 1387-2273 .- 0378-4347. ; 752:2, s. 323-334
  • Tidskriftsartikel (refereegranskat)abstract
    • A methodology for the rapid and quantitative analysis of phosphorylation sites in proteins is presented. The coupling of capillary high-performance liquid chromatography (HPLC) to electrospray ionization mass spectrometry (ESI-MS) allowed one to distinguish phosphorylation sites based on retention time and mass difference from complex peptide mixtures. The methodology was first evaluated and validated for a mixture of non-, mono-, and dityrosine-phosphorylated synthetic peptides, corresponding to the tryptic fragment 485-496 (ALGADDSYYTAR) of the human protein tyrosine kinase ZAP-70. The limits of detection for the non-, mono- and diphosphorylated peptides were about 15. 40 and 100 fmol, respectively, when using a 300 mum I.D. column. Application of the method was extended to identify phosphopeptides generated from a trypsin digest of recombinant autophosphorylated ZAP-70, in particular with respect to quantifying the status at the regulatory phosphorylation sites Tyr-492 and Tyr-493. Combination of chromatographic and on-line tandem mass spectrometry data, allowed one to ascertain the identity of the detected peptides, a prerequisite to analyses in more complex biological samples. As an extension to the methodology described above, we evaluated the feasibility of interfacing capillary HPLC to matrix assisted laser desorption ionisation time-of-Right mass spectrometry (MALDI-TOF-MS), using a micromachined piezoelectric flow-through dispenser as the interface. This enabled direct arraying of chromatographically separated components onto a target plate that was precoated with matrix for subsequent analysis by MALDI-TOF-MS without further sample handling. (C) 2001 Elsevier Science B.V. All rights reserved.
  •  
8.
  • Miliotis, T., et al. (författare)
  • Development of silicon microstructures and thin-film MALDI target plates for automated proteomics sample identifications
  • 2001
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier BV. - 1872-678X .- 0165-0270. ; 109:1, s. 41-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report on the development of a proteomic platform utilizing a piezoelectric flow-through dispensing unit made from silicon microstructures. The use of a novel surface coating, where matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI MS) targets were uniformly precoated with a thin film of matrix/nitrocellulose, made the sample preparation straightforward and enabled the enrichment and analysis of proteins at low levels in proteomics samples. We demonstrate this by analyzing excised spots in a biological sample originating from a human fetal fibroblast cell line that was subjected to 2D gel-electrophoresis. Furthermore, a sample deposition rate below 30 Hz results in an increased analyte density on the dispensed sample spot, rendering signal amplification. In general, the sensitivity for proteins and peptides can be enhanced 10-50 times compared to traditional MALDI sample preparation techniques. (C) 2001 Elsevier Science B.V. All rights reserved.
  •  
9.
  • Nguyen, Duong T., et al. (författare)
  • Humanizing Miniature Hearts through 4-Flow Cannulation Perfusion Decellularization and Recellularization
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite improvements in pre-clinical drug testing models, predictability of clinical outcomes continues to be inadequate and costly due to poor evidence of drug metabolism. Humanized miniature organs integrating decellularized rodent organs with tissue specific cells are translational models that can provide further physiological understanding and evidence. Here, we evaluated 4-Flow cannulated rat hearts as the fundamental humanized organ model for cardiovascular drug validation. Results show clearance of cellular components in all chambers in 4-Flow hearts with efficient perfusion into both coronary arteries and cardiac veins. Furthermore, material characterization depicts preserved organization and content of important matrix proteins such as collagens, laminin, and elastin. With access to the complete vascular network, different human cell types were delivered to show spatial distribution and integration into the matrix under perfusion for up to three weeks. The feature of 4-Flow cannulation is the preservation of whole heart conformity enabling ventricular pacing via the pulmonary vein as demonstrated by noninvasive monitoring with fluid pressure and ultrasound imaging. Consequently, 4-Flow hearts surmounting organ mimicry challenges with intact complexity in vasculature and mechanical compliance of the whole organ providing an ideal platform for improving pre-clinical drug validation in addition to understanding cardiovascular diseases.
  •  
10.
  •  
11.
  • Utkovic Westergren, Helena, et al. (författare)
  • Determinants of coronary flow reserve in non-diabetic patients with chest pain without myocardial perfusion defects
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Microvascular dysfunction could be responsible for chest pain in patients without myocardial perfusion defects. We evaluated microvascular function using ultrasound-assessed coronary flow reserve (CFR) in patients with chest pain and normal myocardial perfusion scintigram. Secondly, we investigated association between cardiovascular parameters and decreased CFR in a sex specific manner. A total of 202 (128 women) non-diabetic patients with chest pain and suspected myocardial ischemia, but without myocardial perfusion defects on myocardial perfusion scintigram, were enrolled and underwent CFR examination and blood sampling. All patients were followed- up for cardiovascular events. We used a supervised principal component analysis including 66 variables such as clinical parameters, ongoing medication, coronary artery disease history, lipids, metabolic parameters, inflammatory and other cardiovascular parameters. During a median follow-up time of 5.4 years, 25 cardiovascular events occurred; (men; 18, women; 7). Average CFR of the study cohort was 2.7 +/- 1.2 and 14% showed impaired CFR< 2.0. In an adjusted Cox regression analysis, CFR< 2.0 independently predicted eventfree survival (HR: 2.5, p = 0.033). In the supervised principal component analysis high insulin resistance assessed by Homeostatic model assessment for insulin resistance was the strongest biochemical marker associated with decreased CFR. Interestingly, upon sex specific multivariable linear regression analysis, the association was only significant in men (beta = -0.132, p = 0.041) while systolic blood pressure remained an independent predictor in women (beta = -0.009, p = 0.011). In non-diabetic patients with chest pain without myocardial perfusion defects, low CFR has prognostic value for future cardiovascular events. Insulin resistance appears to be a marker for decreased CFR in men. Indeed, in the context of contribution of traditional risk factors in this patient population, the value of systolic blood pressure seems to be important in the women.
  •  
12.
  • Wagner, K, et al. (författare)
  • An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation
  • 2002
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 74:4, s. 809-820
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive on-line two-dimensional 2D-HPLC system with integrated sample preparation was developed for the analysis of proteins and peptides with a molecular weight below 20 kDa. The system setup provided fast separations and high resolving power and is considered to be a complementary technique to 2D gel electrophoresis in proteomics. The on-line system reproducibly resolved similar to1000 peaks within the total analysis time of 96 min and avoided sample losses by off-line sample handling. The low-molecular-weight target analytes were separated from the matrix using novel silica-based restricted access materials (RAM) with ion exchange functionalities. The size-selective sample fractionation step was followed by anion or cation exchange chromatography as the first dimension. The separation mechanism in the subsequent second dimension employed hydrophobic interactions using short reversed-phase (RP) columns. A new column-switching technique, including four parallel reversed-phase columns, was employed in the second dimension for on-line fractionation and separation. Gradient elution and UV detection of two columns were performed simultaneously while loading the third and regenerating the fourth column. The total integrated workstation was operated in an unattended mode. Selected peaks were collected and analyzed off-line by MALDI-TOF mass spectrometry. The system was applied to protein mapping of biological samples of human hemofiltrate as well as of cell lysates originating from a human fetal fibroblast cell line, demonstrating it to be a viable alternative to 2D gel electrophoresis for mapping peptides and small proteins.
  •  
13.
  • Westergren, Helena, 1977, et al. (författare)
  • Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice
  • 2015
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Type 2 diabetes is associated with macro-and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob) mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds. In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice. In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy