SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mincheva Rosica) "

Sökning: WFRF:(Mincheva Rosica)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Avella, Angelica, 1995, et al. (författare)
  • Organo-Mediated Ring-Opening Polymerization of Ethylene Brassylate from Cellulose Nanofibrils in Reactive Extrusion
  • 2024
  • Ingår i: ACS Sustainable Chemistry & Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 12:29, s. 10727-10738
  • Tidskriftsartikel (refereegranskat)abstract
    • Ethylene brassylate is a renewable macrolactone from castor oil that can be polymerized via ring-opening polymerization (ROP) to obtain a fully biosourced biodegradable polyester. ROP mediated by organometallic catalysts leads to high molar mass poly(ethylene brassylate) (PEB). However, the use of metal-free organocatalysis has several advantages, such as the reduction of toxic and expensive metals. In this work, a novel cellulose nanofibril (CNF)/PEB nanocomposite fabrication process by organocatalysis and reactive extrusion (REx) is disclosed. Here, ROP was carried out via solvent-free REx in the presence of CNFs using organic 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a catalyst. Neat or lactate-esterified CNFs (LACNF) were used as initiators to investigate the effect of surface topochemistry on the in situ polymerization and the properties of the nanocomposites. A molar mass of 9 kDa was achieved in the presence of both unmodified and LACNFs with high monomer conversion (>98%) after 30 min reaction in a microcompounder at 130 °C. Tensile analysis showed that both nanofibril types reinforce the matrix and increase its elasticity due to the efficient dispersion obtained through the grafting from polymerization achieved during the REx. Mechanical recycling of the neat polymer and the nanocomposites was proven as a circular solution for the materials’ end-of-life and showed that lactate moieties induced some degradation.
  •  
2.
  • Avella, Angelica, 1995, et al. (författare)
  • Reactive melt crosslinking of cellulose nanocrystals/poly(ε-caprolactone) for heat-shrinkable network
  • 2022
  • Ingår i: Composites Part A: Applied Science and Manufacturing. - : Elsevier BV. - 1359-835X. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Focusing on the challenge of non-biodegradable plastics replacement, we propose a design for peroxide-initiated crosslinking of biodegradable poly(ε-caprolactone) (PCL) and renewable cellulose nanocrystals (CNCs) bionanocomposites. An industrially scalable water-assisted reactive melt-processing (REx) is studied to explore the hypothesis of synergy between simultaneous effects of water on improving CNC dispersion and boosting PCL branching/crosslinking. We demonstrate that the melt processing control enables the preparation of targeted thermoplastic/thermoset bionanocomposites with gel content up to ≈ 40 %, identified as the limit of their melt-processability. Structural characterization reveals that ≈ 70 wt% of the initial CNC content is irreversibly incorporated in a percolating network, enhancing the crosslinked bionanocomposites properties. The bionanocomposites' complex viscosity and elastic character increase with the gel content, thus improving PCL melt performance. Furthermore, the irreversible entrapment of CNCs in the 3D percolating network provides heat-shrinkability, indicating a potential of the reacted bionanocomposites for heat-triggered shape-memory.
  •  
3.
  • Avella, Angelica, 1995, et al. (författare)
  • Reusable, Recyclable, and Biodegradable Heat-Shrinkable Melt Cross-Linked Poly(butylene adipate-co-terephthalate)/Pulp Biocomposites for Polyvinyl Chloride Replacement
  • 2024
  • Ingår i: ACS Sustainable Chemistry & Engineering. - 2168-0485. ; 12:13, s. 5251-5262
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossil-based and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are cost-competitive with existing shrink wraps. Poly(butylene adipate-co-terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing. The designed peroxide-initiated reaction led to a 55 wt % cocontinuous insoluble gel incorporating all the pulp fibers into a cross-linked polymer network. In the solid state, the cross-linked biocomposite shows 60% elongation at break with a 200% increase in Young’s modulus, while the only addition of pulp fibers stiffens and embrittles the matrix. Creep tests in the melt state indicated that the cross-linked network induces homogeneous shrinking even during the loading phase, demonstrating the potential use of the biocomposites as heat-shrinkable films. The shrinking also promotes the shape-memory of the biocomposite, which retains its dimensions after four cycles. The circularity of the materials was assessed by mechanical recycling and industrial composting, which have proven feasible end-of-life options for heat-shrinkable biocomposites.
  •  
4.
  • Avella, Angelica, 1995, et al. (författare)
  • Substantial effect of water on radical melt crosslinking and rheological properties of poly(ε-caprolactone)
  • 2021
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 13:4, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • One-step reactive melt processing (REx) via radical reactions was evaluated with the aim of improving the rheological properties of poly(ε-caprolactone) (PCL). In particular, a waterassisted REx was designed under the hypothesis of increasing crosslinking efficiency with water as a low viscous medium in comparison with a slower PCL macroradicals diffusion in the melt state. To assess the effect of dry vs. water-assisted REx on PCL, its structural, thermo-mechanical and rheological properties were investigated. Water-assisted REx resulted in increased PCL gel fraction compared to dry REx (from 1–34%), proving the rationale under the formulated hypothesis. From dynamic mechanical analysis and tensile tests, the crosslink did not significantly affect the PCL mechanical performance. Dynamic rheological measurements showed that higher PCL viscosity was reached with increasing branching/crosslinking and the typical PCL Newtonian behavior was shifting towards a progressively more pronounced shear thinning. A complete transition from viscous-to solid-like PCL melt behavior was recorded, demonstrating that higher melt elasticity can be obtained as a function of gel content by controlled REx. Improvement in rheological properties offers the possibility of broadening PCL melt processability without hindering its recycling by melt processing.
  •  
5.
  • Deiana, Luca, et al. (författare)
  • In Situ Enzymatic Polymerization of Ethylene Brassylate Mediated by Artificial Plant Cell Walls in Reactive Extrusion
  • 2024
  • Ingår i: ACS Applied Polymer Materials. - : American Chemical Society (ACS). - 2637-6105. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa. In addition, we discovered that APCW catalyzes the formation of large ethylene brassylate macrocycles. The enzymatic stability and efficiency of the APCW were investigated by recycling the catalyst both in bulk and reactive extrusion. The obtained poly(ethylene brassylate) was applied as a biobased and biodegradable hydrophobic paper coating.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy