SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Misiti V.) "

Search: WFRF:(Misiti V.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blythe, L. S., et al. (author)
  • Viscosity controlled magma-carbonate interaction : a comparison of Mt. Vesuvius (Italy) and Mt. Merapi (Indonesia)
  • 2012
  • Conference paper (peer-reviewed)abstract
    • Magma-carbonate interaction is increasingly seen as a viable and extremely important cause of magma contamination, and the generation of a crustally sourced CO2 phase (Goff et al., 2001; Freda et al., 2010). Even though the process is well recognized at certain volcanoes e.g. Popocatépetl, (Mexico); Merapi, (Indonesia); and Colli Albani, (Italy) (Goff et al., 2001; Deegan et al., 2010; Freda et al., 2010), neither the kinetics of carbonate assimilation nor its consequences for controlling the explosivity of eruptions have been constrained. Here we show the results of magma-carbonate interaction experiments conducted at 1200 °C and 0.5 GPa for varying durations (0 s, 60 s, 90 s and 300 s) for the Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) volcanic systems. We performed experiments using glassy starting materials specific to each volcano (shoshonite for Mt. Vesuvius, basaltic-andesite for Mt. Merapi) with different degrees of hydration (anhydrous vs hydration with ~ 2 wt % water) and using carbonate fragments of local origin; see Deegan et al., (2010) and Jolis et al., (2011). Experimental products include a gas phase (CO2-rich) and two melt phases, one pristine (Ca-normal) and one contaminated (Ca-rich) separated by a 'contamination front' which propagates outwards from the carbonate clast. Vesicles appear to nucleate in the contaminated glass and then migrate into the pristine one. Both contamination front propagation and bubble migration away from the carbonate are slower in anhydrous basaltic-andesite (Merapi anhydrous series) than in hydrated basaltic-andesite and shoshonite (Merapi and Vesuvius hydrated series), suggesting that assimilation speed is strongly controlled by the degree of hydration and the SiO2 content, both of which influence melt viscosity and hence diffusivity. As the carbonate dissolution proceeds in our experiments, initially dissolved and eventually exsolved CO2 builds up in the contaminated Ca-rich melt phase. Once melt volatile oversaturation is achieved, the reaction can only progress further if vesicles are efficiently removed from the contaminated melt phase. Viscosity, which controls the vesicle migration efficiency, thus ultimately determines the progression and rate of the contamination reaction. Our results show that characteristics of magma-carbonate interaction at different volcanic systems are likely to differ as a result of a volcanos' individual magma properties, especially viscosity, which determines the speed at which gaseous reaction products (i.e. CO2) can be removed from the reaction site.
  •  
2.
  •  
3.
  • Blythe, Lara, et al. (author)
  • CO2 bubble generation and migration during magma–carbonate interaction
  • 2015
  • In: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 169:4
  • Journal article (peer-reviewed)abstract
    • We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.
  •  
4.
  • Deegan, Frances, et al. (author)
  • Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology
  • 2010
  • In: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 51:5, s. 1027-1051
  • Journal article (peer-reviewed)abstract
    • There is considerable evidence for continuing, late-stage interaction between the magmatic system at Merapi volcano, Indonesia, and local crustal carbonate (limestone). Calc-silicate xenoliths within Merapi basaltic-andesite eruptive rocks display textures indicative of intense interaction between magma and crustal carbonate, and Merapi feldspar phenocrysts frequently contain crustally contaminated cores and zones. To resolve the interaction processes between magma and limestone in detail we have performed a series of time-variable decarbonation experiments in silicate melt, at magmatic pressure and temperature, using a Merapi basaltic-andesite and local Javanese limestone as starting materials. We have used in situ analytical methods to determine the elemental and strontium isotope composition of the experimental products and to trace the textural, chemical, and isotopic evolution of carbonate assimilation. The major processes of magma-carbonate interaction identified are: (1) rapid decomposition and degassing of carbonate; (2) generation of a Ca-enriched, highly radiogenic strontium contaminant melt, distinct from the starting material composition; (3) intense CO2 vesiculation, particularly within the contaminated zones; (4) physical mingling between the contaminated and unaffected melt domains; (5) chemical mixing between melts. The experiments reproduce many of the features of magma-carbonate interaction observed in the natural Merapi xenoliths and feldspar phenocrysts. The Ca-rich, high 87Sr/86Sr contaminant melt produced in the experiments is considered as a precursor to the Ca-rich (often 'hyper-calcic') phases found in the xenoliths and the contaminated zones in Merapi feldspars.The xenoliths also exhibit micro-vesicular textures that can be linked to the CO2 liberation process seen in the experiments.This study, therefore, provides well-constrained petrological insights into the problem of crustal interaction at Merapi and points toward the substantial impact of such interaction on the volatile budget of the volcano.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view