SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mittag M) "

Sökning: WFRF:(Mittag M)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Adolph, C, et al. (författare)
  • Measurement of the eta -> 3 pi(0) Dalitz plot distribution with the WASA detector at COSY
  • 2009
  • Ingår i: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 677:1-2, s. 24-29
  • Tidskriftsartikel (refereegranskat)abstract
    • In the first production run of the WASA experiment at COSY, the eta decay into three neutral pions was measured in proton-proton interactions at a proton beam kinetic energy of 1.4 GeV. The Dalitz plot of the three pious was Studied using 1.2 x 10(5) fully reconstructed events. and the quadratic slope parameter alpha was determined to be -0.027 +/- 0.008(stat) +/- 0.005(syst). The result is consistent with previous measurements and further corroborates the importance of pion-pion final state interactions. (C) 2009 Elsevier B.V. All rights reserved.
  •  
4.
  • Dore, R, et al. (författare)
  • Nesfatin-1 decreases the motivational and rewarding value of food
  • 2020
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X. ; 45:1110, s. 1645-1655
  • Tidskriftsartikel (refereegranskat)abstract
    • Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways. The endogenous levels of this peptide are regulated by the feeding state, with reduced levels following fasting and normalized by refeeding. The fasting state is associated with biochemical and behavioral adaptations ultimately leading to enhanced sensitization of reward circuitries towards food reward. Although NUCB2/nesfatin-1 is expressed in reward-related brain areas, its role in regulating motivation and preference for nutrients has not yet been investigated. We here report that both dopamine and GABA neurons express NUCB2/nesfatin-1 in the VTA. Ex vivo electrophysiological recordings show that nesfatin-1 hyperpolarizes dopamine, but not GABA, neurons of the VTA by inducing an outward potassium current. In vivo, central administration of nesfatin-1 reduces motivation for food reward in a high-effort condition, sucrose intake and preference. We next adopted a 2-bottle choice procedure, whereby the reward value of sucrose was compared with that of a reference stimulus (sucralose + optogenetic stimulation of VTA dopamine neurons) and found that nesfatin-1 fully abolishes the fasting-induced increase in the reward value of sucrose. These findings indicate that nesfatin-1 reduces energy intake by negatively modulating dopaminergic neuron activity and, in turn, hedonic aspects of food intake. Since nesfatin-1´s actions are preserved in conditions of leptin resistance, the present findings render the NUCB2/nesfatin-1 system an appealing target for the development of novel therapeutical treatments towards obesity.
  •  
5.
  • Saikia, S. Boro, et al. (författare)
  • Time evolution of magnetic activity cycles in young suns : The curious case of kappa Ceti
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A detailed investigation of the magnetic properties of young Sun-like stars can provide valuable information on our Sun's magnetic past and its impact on the early Earth.Aims. We determine the properties of the moderately rotating young Sun-like star kappa Ceti's magnetic and activity cycles using 50 yr of chromospheric activity data and six epochs of spectropolarimetric observations.Methods. The chromospheric activity was determined by measuring the flux in the Call H and K lines. A generalised Lomb-Scargle periodogram and a wavelet decomposition were used on the chromospheric activity data to establish the associated periodicities. The vector magnetic field of the star was reconstructed using the technique of Zeeman Doppler imaging on the spectropolarimetric observations.Results. Our period analysis algorithms detect a 3.1 yr chromospheric cycle in addition to the star's well-known similar to 6 yr cycle period. Although the two cycle periods have an approximate 1:2 ratio, they exhibit an unusual temporal evolution. Additionally, the spectropolarimetric data analysis shows polarity reversals of the star's large-scale magnetic field, suggesting a similar to 10 yr magnetic or Hale cycle.Conclusions. The unusual evolution of the star's chromospheric cycles and their lack of a direct correlation with the magnetic cycle establishes kappa Ceti as a curious young Sun. Such complex evolution of magnetic activity could be synonymous with moderately active young Suns, which is an evolutionary path that our own Sun could have taken.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Fischer, Alexander W., et al. (författare)
  • Leptin Raises Defended Body Temperature without Activating Thermogenesis
  • 2016
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 14:7, s. 1621-1631
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin has been believed to exert its weight-reducing action not only by inducing hypophagia but also by increasing energy expenditure/thermogenesis. Leptin-deficient ob/ob mice have correspondingly been thought to be thermogenically limited and to show hypothermia, mainly due to atrophied brown adipose tissue (BAT). In contrast to these established views, we found that BAT is fully functional and that leptin treatment did not increase thermogenesis in wildtype or in ob/ob mice. Rather, ob/ob mice showed a decreased but defended body temperature (i. e., were anapyrexic, not hypothermic) that was normalized to wild-type levels after leptin treatment. This was not accompanied by increased energy expenditure or BAT recruitment but, instead, was mediated by decreased tail heat loss. The weight-reducing hypophagic effects of leptin are, therefore, not augmented through a thermogenic effect of leptin; leptin is, however, pyrexic, i. e., it alters centrally regulated thresholds of thermoregulatory mechanisms, in parallel to effects of other cytokines.
  •  
11.
  •  
12.
  • Hoefig, CS, et al. (författare)
  • Thermoregulatory and Cardiovascular Consequences of a Transient Thyrotoxicosis and Recovery in Male Mice
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 157:7, s. 2957-2967
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones play a major role in body homeostasis, regulating energy expenditure and cardiovascular function. Given that obese people or athletes might consider rapid weight loss as beneficial, voluntary intoxication with T4 preparations is a growing cause for thyrotoxicosis. However, the long-lasting effects of transient thyrotoxicosis are poorly understood. Here we examined metabolic, thermoregulatory, and cardiovascular function upon induction and recovery from a 2-week thyrotoxicosis in male C57BL/6J mice. Our results showed that T4 treatment caused tachycardia, decreased hepatic glycogen stores, and higher body temperature as expected; however, we did not observe an increase in brown fat thermogenesis or decreased tail heat loss, suggesting that these tissues do not contribute to the hyperthermia induced by thyroid hormone. Most interestingly, when the T4 treatment was ended, a pronounced bradycardia was observed in the animals, which was likely caused by a rapid decline of T3 even below baseline levels. On the molecular level, this was accompanied by an overexpression of cardiac phospholamban and Serca2a mRNA, supporting the hypothesis that the heart depends more on T3 than T4. Our findings therefore demonstrate that a transient thyrotoxicosis can have pathological effects that even persist beyond the recovery of serum T4 levels, and in particular the observed bradycardia could be of clinical relevance when treating hyperthyroid patients.
  •  
13.
  • Lazar, Tamas, et al. (författare)
  • PED in 2021 : A major update of the protein ensemble database for intrinsically disordered proteins
  • 2021
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 49:D1, s. 404-411
  • Tidskriftsartikel (refereegranskat)abstract
    • The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.
  •  
14.
  • Martínez-Sánchez, Noelia, et al. (författare)
  • Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance
  • 2017
  • Ingår i: Cell Metabolism. - Cambridge, MA, United States : Cell Press. - 1550-4131 .- 1932-7420. ; 26:1, s. 212-229.e12
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.
  •  
15.
  • Mittag, J, et al. (författare)
  • Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor-alpha1
  • 2010
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 151:5, s. 2388-2395
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormone has profound direct effects on cardiac function, but the hormonal interactions with the autonomic control of heart rate are unclear. Because thyroid hormone receptor (TR)-α1 has been implicated in the autonomic control of brown adipose energy metabolism, it might also play an important role in the central autonomic control of heart rate. Thus, we aimed to analyze the role of TRα1 signaling in the autonomic control of heart rate using an implantable radio telemetry system. We identified that mice expressing the mutant TRα1R384C (TRα1+m mice) displayed a mild bradycardia, which becomes more pronounced during night activity or on stress and is accompanied by a reduced expression of nucleotide-gated potassium channel 2 mRNA in the heart. Pharmacological blockage with scopolamine and the β-adrenergic receptor antagonist timolol revealed that the autonomic control of cardiac activity was similar to that in wild-type mice at room temperature. However, at thermoneutrality, in which the regulation of heart rate switches from sympathetic to parasympathetic in wild-type mice, TRα1+m mice maintained sympathetic stimulation and failed to activate parasympathetic signaling. Our findings demonstrate a novel role for TRα1 in the adaptation of cardiac activity by the autonomic nervous system and suggest that human patients with a similar mutation in TRα1 might exhibit a deficit in cardiac adaptation to stress or physical activity and an increased sensitivity to β-blockers.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Vujovic, M, et al. (författare)
  • Interference of a mutant thyroid hormone receptor alpha1 with hepatic glucose metabolism
  • 2009
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 150:6, s. 2940-2947
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice expressing the mutant thyroid hormone receptor TRα1R384C, which has a 10-fold reduced affinity to the ligand T3, exhibit hypermetabolism due to an overactivation of the sympathetic nervous system. To define the consequences in the liver, we analyzed hepatic metabolism and the regulation of liver genes in the mutant mice. Our results showed that hepatic phosphoenolpyruvate-carboxykinase was up-regulated and pyruvate kinase mRNA down-regulated, contrary to what observed after T3 treatment. In contrast, mice expressing a mutant TRα1L400R specifically in the liver did not show a dysregulation of these genes; however, when the TRα1L400R was expressed ubiquitously, the hepatic phenotype differed from TRα1R384C animals, suggesting that the localization of the mutation plays an important role for its consequences on glucose metabolism. Furthermore, we observed that glycogen stores were completely depleted in TRα1R384C animals, despite increased gluconeogenesis and decreased glycolysis. Exposure of the mutant mice to high maternal levels of thyroid hormone during fetal development leads to a normal liver phenotype in the adult. Our results show how genetic and maternal factors interact to determine the metabolic setpoint of the offspring and indicate an important role for maternal thyroid hormone in the susceptibility to metabolic disorders in adulthood.
  •  
20.
  •  
21.
  • Wallis, K, et al. (författare)
  • The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons
  • 2010
  • Ingår i: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 1944-9917 .- 0888-8809. ; 24:10, s. 1904-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormone is essential for brain development where it acts mainly through the thyroid hormone receptor α1 (TRα1) isoform. However, the potential for the hormone to act in adult neurons has remained undefined due to difficulties in reliably determining the expression pattern of TR proteins in vivo. We therefore created a mouse strain that expresses TRα1 and green fluorescent protein as a chimeric protein from the Thra locus, allowing examination of TRα1 expression during fetal and postnatal development and in the adult. Furthermore, the use of antibodies against other markers enabled identification of TRα1 expression in subtypes of neurons and during specific stages of their maturation. TRα1 expression was first detected in postmitotic cells of the cortical plate in the embryonic telencephalon and preceded the expression of the mature neuronal protein NeuN. In the cerebellum, TRα1 expression was absent in proliferating cells of the external granular layer, but switched on as the cells migrated towards the internal granular layer. In addition, TRα1 was expressed transiently in developing Purkinje cells, but not in mature cells. Glial expression was found in tanycytes in the hypothalamus and in the cerebellum. In the adult brain, TRα1 expression was detected in essentially all neurons. Our data demonstrate that thyroid hormone, unexpectedly, has the capacity to play an important role in virtually all developing and adult neurons. Because the role of TRα1 in most neuronal cell types in vivo is largely unknown, our findings suggest that novel functions for thyroid hormone remain to be identified in the brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy