SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mizohata K.) "

Sökning: WFRF:(Mizohata K.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Woitowich, N. C., et al. (författare)
  • Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome
  • 2018
  • Ingår i: Iucrj. - : International Union of Crystallography (IUCr). - 2052-2525. ; 5:Part 5, s. 619-634
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruitingbody formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.
  •  
2.
  • Nango, E., et al. (författare)
  • A three-dimensional movie of structural changes in bacteriorhodopsin
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6319, s. 1552-1557
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient.
  •  
3.
  • Sarakinos, Kostas, 1980-, et al. (författare)
  • Unravelling the effect of nitrogen on the morphological evolution of thin silver films on weakly-interacting substrates
  • 2024
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of nitrogen on the morphological evolution of thin silver (Ag) films deposited on weakly-interacting amorphous carbon (a-C) and silicon oxide (SiOx) surfaces. Films are synthesized at a deposition rate of 0.1nm·s-1 by direct current magnetron sputtering (DCMS), high power impulse magnetron sputtering (HiPIMS), and electron-beam evaporation (EBE). We monitor growth in situ and in real time by measuring the evolution of film stress and optical properties, complemented by ex situ analyses of discontinuous-layer morphologies, film crystal structure, and film composition. We find that addition of molecular nitrogen (N2) to the plasmagenic gas (Ar) during DCMS and HiPIMS promotes a two-dimensional (2D) morphology. Concurrently, EBE-deposited films exhibit a significantly more pronounced three-dimensional morphological evolution, independently from the gas atmosphere composition. We argue that the 2D morphology in DCMS- and HiPIMS-grown films is enhanced due to incorporation of atomic nitrogen (N)—result of plasma-induced N2 dissociation—that hinders island reshaping during coalescence. This mechanism is not active during EBE due to the absence of energetic plasma electrons driving N2 dissociation. The overall results of the study show that accurate control of vapor-phase chemistry is of paramount importance when using gaseous species as agents for manipulating growth in weakly-interacting film-substrate systems.
  •  
4.
  • Likonen, J., et al. (författare)
  • Deposition of C-13 tracer in the JET MkII-HD divertor
  • 2011
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 415:1, s. S250-S253
  • Tidskriftsartikel (refereegranskat)abstract
    • Migration of C-13 has been investigated at JET by puffing (CH4)-C-13 into the outer midplane at the end of the 2007 campaign. The C-13 deposition profile was measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) techniques. C-13 was mainly found on Tile 1 and near the outer strike point (OSP) on Tile 7. The C-13 transport was modelled with the EDGE2D/NIMBUS code. Previous work indicates that migration pathways are: (1) through the main chamber scrape-off layer (SOL), (2) migration through the private flux region (PFR) aided by E x B drifts and (3) neutral migration originating near the strike points. The main contribution of this paper is to further describe the neutral migration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy