SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mlynczak Martin G.) "

Sökning: WFRF:(Mlynczak Martin G.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mlynczak, Martin G., et al. (författare)
  • Observations of the O(3P) fine structure line at 63 μm in the upper mesosphere and lower thermosphere
  • 2004
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 109:A12
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of the O(3P) fine structure line at 63 μm originating in the upper mesosphere and lower thermosphere have been obtained by the far-infrared spectrometer (FIRS-2) instrument, a Fourier transform spectrometer that flies periodically on high-altitude balloons. FIRS-2 primarily observes stratospheric ozone photochemistry using the technique of limb emission spectroscopy. As part of the routine operation of FIRS-2, up-looking views are made, during which the emission from the atomic oxygen is recorded. Using the Mass Spectrometer Incoherent Scatter (MSIS) empirical model to provide temperature and atomic oxygen concentrations, we compute radiances for comparison with the FIRS-2 observations. The computed radiances agree with the FIRS-2 measurements, which encompass 31 observations during nine flights over a span of 14 years, to within 10% on average, with 23 of the 31 observations agreeing to within measurement and calculation uncertainty. The consistency between the observed and computed radiances suggests that the MSIS model provides a reasonably accurate representation of temperature and atomic oxygen in the upper mesosphere and lower thermosphere.
  •  
2.
  • Fytterer, Tilo, et al. (författare)
  • Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:6, s. 3327-3338
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements from 2002 to 2011 by three inde-pendent satellite instruments, namely MIPAS, SABER, andSMR on board the ENVISAT, TIMED, and Odin satellitesare used to investigate the intra-seasonal variability of strato-spheric and mesospheric O3 volume mixing ratio (vmr) in-side the Antarctic polar vortex due to solar and geomagneticactivity. In this study, we individually analysed the relativeO3 vmr variations between maximum and minimum condi-tions of a number of solar and geomagnetic indices (F10.7cm solar radio flux, Ap index, ≥2 MeV electron flux). Theindices are 26-day averages centred at 1 April, 1 May, and1 June while O3 is based on 26-day running means from1 April to 1 November at altitudes from 20 to 70 km. Dur-ing solar quiet time from 2005 to 2010, the composite ofall three instruments reveals an apparent negative O3 sig-nal associated to the geomagnetic activity (Ap index) around1 April, on average reaching amplitudes between −5 and−10 % of the respective O3 background. The O3 responseexceeds the significance level of 95 % and propagates down-wards throughout the polar winter from the stratopause downto ∼ 25 km. These observed results are in good qualitativeagreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes par-ticle impact ionisation.
  •  
3.
  • Imai, Koji, et al. (författare)
  • Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:11, s. 5750-5769
  • Tidskriftsartikel (refereegranskat)abstract
    • The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station provided global measurements of ozone profiles in the middle atmosphere from 12 October 2009 to 21 April 2010. We present validation studies of the SMILES version 2.1 ozone product based on coincidence statistics with satellite observations and outputs of chemistry and transport models (CTMs). Comparisons of the stratospheric ozone with correlative data show agreements that are generally within 10%. In the mesosphere, the agreement is also good and better than 30% even at a high altitude of 73km, and the SMILES measurements with their local time coverage also capture the diurnal variability very well. The recommended altitude range for scientific use is from 16 to 73km. We note that the SMILES ozone values for altitude above 26km are smaller than some of the correlative satellite datasets; conversely the SMILES values in the lower stratosphere tend to be larger than correlative data, particularly in the tropics, with less than 8% difference below similar to 24km. The larger values in the lower stratosphere are probably due to departure of retrieval results between two detection bands at altitudes below 28km; it is similar to 3% at 24km and is increasing rapidly down below.
  •  
4.
  • Kratz, David P., et al. (författare)
  • An inter-comparison of far-infrared line-by-line radiative transfer models
  • 2005
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier BV. - 0022-4073 .- 1879-1352. ; 90:3-4, s. 323-341
  • Tidskriftsartikel (refereegranskat)abstract
    • A considerable fraction (>40%) of the outgoing longwave radiation escapes from the Earth's atmosphere-surface system within a region of the spectrum known as the far-infrared (wave-numbers less than ). Dominated by the line and continuum spectral features of the pure rotation band of water vapor, the far-infrared has a strong influence upon the radiative balance of the troposphere, and hence upon the climate of the Earth. Despite the importance of the far-infrared contribution, however, very few spectrally resolved observations have been made of the atmosphere for wave-numbers less than . The National Aeronautics and Space Administration (NASA), under its Instrument Incubator Program (IIP), is currently developing technology that will enable routine, space-based spectral measurements of the far-infrared. As part of NASA's IIP, the Far-Infrared Spectroscopy of the Troposphere (FIRST) project is developing an instrument that will have the capability of measuring the spectrum over the range from 100 to at a resolution of . To properly analyze the data from the FIRST instrument, accurate radiative transfer models will be required. Unlike the mid-infrared, however, no inter-comparison of codes has been performed for the far-infrared. Thus, in parallel with the development of the FIRST instrument, an investigation has been undertaken to inter-compare radiative transfer models for potential use in the analysis of far-infrared measurements. The initial phase of this investigation has focused upon the inter-comparison of six distinct line-by-line models. The results from this study have demonstrated remarkably good agreement among the models, with differences being of order 0.5%, thereby providing a high measure of confidence in our ability to accurately compute spectral radiances in the far-infrared.
  •  
5.
  • Mlynczak, Martin G., et al. (författare)
  • Atomic oxygen in the mesosphere and lower thermosphere derived from SABER : Algorithm theoretical basis and measurement uncertainty
  • 2013
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 118:11, s. 5724-5735
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic oxygen (O) is a fundamental component in chemical aeronomy of Earth's mesosphere and lower thermosphere region extending from approximately 50 km to over 100 km in altitude. Atomic oxygen is notoriously difficult to measure, especially with remote sensing techniques from orbiting satellite sensors. It is typically inferred from measurements of the ozone concentration in the day or from measurements of the Meinel band emission of the hydroxyl radical (OH) at night. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite measures OH emission and ozone for the purpose of determining the O-atom concentration. In this paper, we present the algorithms used in the derivation of day and night atomic oxygen from these measurements. We find excellent consistency between the day and night O-atom concentrations from daily to annual time scales. We also examine in detail the collisional relaxation of the highly vibrationally excited OH molecule at night measured by SABER. Large rate coefficients for collisional removal of vibrationally excited OH molecules by atomic oxygen are consistent with the SABER observations if the deactivation of OH(9) proceeds solely by collisional quenching. An uncertainty analysis of the derived atomic oxygen is also given. Uncertainty in the rate coefficient for recombination of O and molecular oxygen is shown to be the largest source of uncertainty in the derivation of atomic oxygen day or night.
  •  
6.
  • Mlynczak, Martin G., et al. (författare)
  • Energy transport in the thermosphere during the solar storms of April 2002
  • 2005
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 110:A12
  • Tidskriftsartikel (refereegranskat)abstract
    • The dramatic solar storm events of April 2002 deposited a large amount of energy into the Earth's upper atmosphere, substantially altering the thermal structure, the chemical composition, the dynamics, and the radiative environment. We examine the flow of energy within the thermosphere during this storm period from the perspective of infrared radiation transport and heat conduction. Observations from the SABER instrument on the TIMED satellite are coupled with computations based on the ASPEN thermospheric general circulation model to assess the energy flow. The dominant radiative response is associated with dramatically enhanced infrared emission from nitric oxide at 5.3 μm from which a total of ∼7.7 × 1023 ergs of energy are radiated during the storm. Energy loss rates due to NO emission exceed 2200 Kelvin per day. In contrast, energy loss from carbon dioxide emission at 15 μm is only ∼2.3% that of nitric oxide. Atomic oxygen emission at 63 μm is essentially constant during the storm. Energy loss from molecular heat conduction may be as large as 3.8% of the NO emission. These results confirm the “natural thermostat” effect of nitric oxide emission as the primary mechanism by which storm energy is lost from the thermosphere below 210 km.
  •  
7.
  • Mlynczak, Martin G., et al. (författare)
  • Evidence for a solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere
  • 2007
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 112:A12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 μm has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period. Computations of radiated power using an empirical model show much less variability than observed by SABER.
  •  
8.
  • Mlynczak, Martin G., et al. (författare)
  • Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument
  • 2010
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 115:A3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth's thermosphere. These data have been taken over a period of 7 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W m−3), radiative fluxes (W m−2), and radiated power (W). In the period from January 2002 through January 2009, we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle 23. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 μm and the NO 5.3 μm vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate data set and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.
  •  
9.
  • Mlynczak, Martin G., et al. (författare)
  • Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine time series of the daily global power (W) radiated by carbon dioxide (at 15 μm) and by nitric oxide (at 5.3 μm) from the Earth's thermosphere between 100 km and 200 km altitude. Also examined is a time series of the daily absorbed solar ultraviolet power in the same altitude region in the wavelength span 0 to 175 run. The infrared data are derived from the SABER instrument and the solar data are derived from the SEE instrument, both on the NASA TIMED satellite. The time series cover nearly 5 years from 2002 through 2006. The infrared and solar time series exhibit a decrease in radiated and absorbed power consistent with the declining phase of the current 11-year solar cycle. The infrared time series also exhibits high frequency variations that are not evident in the solar power time series. Spectral analysis shows a statistically significant 9-day periodicity in the infrared data but not in the solar data. A very strong 9-day periodicity is also found to exist in the time series of daily Ap and Kp geomagnetic indexes. These 9-day periodicities are linked to the recurrence of coronal holes on the Sun. These results demonstrate a direct coupling between the upper atmosphere of the Sun and the infrared energy budget of the thermosphere. Copyright 2008 by the American Geophysical Union.
  •  
10.
  • Mlynczak, Martin G., et al. (författare)
  • Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates
  • 2007
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 112:D15
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of the daytime O2(1Δ) airglow emission at 1.27 μm recorded by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. The measured limb radiances are inverted to yield vertical profiles of the volume emission rate of energy from the O2 molecule. From these emission rates we subsequently derive the mesospheric ozone concentrations using a nonlocal thermodynamic equilibrium (non-LTE) radiative and kinetic model. Rates of energy deposition due to absorption of ultraviolet radiation in the Hartley band of ozone are also derived, independent of knowledge of the ozone abundance and solar irradiances. Atomic oxygen concentrations are obtained from the ozone abundance using photochemical steady state assumptions. Rates of energy deposition due to exothermic chemical reactions are also derived. The data products illustrated here are from a test day (4 July 2002) of SABER Version 1.07 data which are now becoming publicly available. This test day illustrates the high quality of the SABER O2(1Δ) airglow and ozone data and the variety of fundamental science questions to which they can be applied.
  •  
11.
  • Remsberg, E.E., et al. (författare)
  • Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER
  • 2008
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 113:D17
  • Tidskriftsartikel (refereegranskat)abstract
    • The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1–3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (Tk). The Tk profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER Tk values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.
  •  
12.
  • Siskind, David E., et al. (författare)
  • Decreases in atomic hydrogen over the summer pole : Evidence for dehydration from polar mesospheric clouds?
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations from the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument on the NASA/Thermospheric Ionosphere Mesosphere Energetics and Dynamics satellite show a surprising decrease in the inferred atomic hydrogen (H) over the polar regions in the lowermost thermosphere during the summer. This contrasts with predictions by global models that H should peak in this region at this time. We suggest the decrease is a consequence of the sequestering of the water vapor by the formation of polar mesospheric clouds (PMCs) that redistributes the H2O thus reducing the chemical source of H. This decrease is more pronounced in the Northern rather than the Southern summer which is roughly consistent with the known morphology of PMCs. A model calculation which includes a PMC parameterization gives good qualitative agreement with the data suggesting that this process should be considered in global models of the coupling between the middle and upper atmosphere. Copyright 2008 by the American Geophysical Union.
  •  
13.
  • Siskind, David E., et al. (författare)
  • Implications of odd oxygen observations by the TIMED/SABER instrument for lower D region ionospheric modeling
  • 2015
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 124, s. 63-70
  • Tidskriftsartikel (refereegranskat)abstract
    • We document the variability in atomic oxygen inferred by the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument on the NASA/TIMED satellite in the lower mesosphere (50-80 km altitude) according to its diurnal, latitudinal, seasonal and solar cycle components. The dominant variation is diurnal and latitudinal. Below 75 km, seasonal and solar cycle effects are less than 5%. Accordingly, we have developed a simple climatology that depends upon local time and latitude and applied it to a model of the D region of the ionosphere. Between 60 and 70 km, atomic oxygen is important in governing the ratio of negative ions to electrons. Using the SABER O climatology along with a previously published climatology of nitric oxide based upon UARS/HALOE data, we compare our model results both to previous calculations and to a profile of electron density [e(-)] acquired by a rocket launched from Kwajalein Atoll. The model results are shown to be consistent with previously published calculations, but the comparison with the data reveals a dramatic discrepancy whereby the calculated [e(-)] is over an order of magnitude less than the observations below 65 km. The most plausible explanation involves changing the partition of negative charge between molecules such as O-2 which rapidly dissociate in sunlight versus heavier, more stable negative ions. Although observations of [e(-)] below 70 km are difficult and infrequent, more research should be invested to evaluate the pervasiveness and the seasonal, latitudinal and diurnal morphology of this model [e(-)] deficit. This may have practical implications as empirical models of the ionosphere predict a secondary maximum in HF radio absorption in the 70 km altitude region.
  •  
14.
  • Smith, Anne K., et al. (författare)
  • Satellite observations of high nighttime ozone at the equatorial mesopause
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument enable the characterization of the seasonal variation of ozone and temperature in the upper mesosphere. These are the first global measurements that resolve both the structure of the secondary ozone maximum at night and the temperature over all seasons of the year. The average nighttime mixing ratios at the altitude of the maximum vary with latitude and season. Analysis shows that the highest mixing ratios are clustered near the equator during equinoxes. The high ozone mixing ratios are observed in exactly the place and time at which the diurnal tide is largest. The diurnal tidal phase is such that coldest temperatures at 95 km occur near midnight. The high ozone is coincident with regions that have both low temperature and low amounts of atomic hydrogen. We focus particularly on ozone mixing ratios in the range of 18-50 ppmv; these occur intermittently in the equinoctial tropics on days when the night temperature is particularly cold. The occurrence of ozone maxima over 20 ppmv was unexpected but is shown in this paper to be consistent with theory and is a result of large-amplitude diurnal tides. The same seasonal and latitudinal characteristics are seen in ozone density measured by Global Ozone Monitoring by Occultation of Stars. Copyright 2008 by the American Geophysical Union.
  •  
15.
  • Gardner, J.L., et al. (författare)
  • Comparison of nighttime nitric oxide 5.3 μm emissions in the thermosphere measured by MIPAS and SABER
  • 2007
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 112:A10
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparative study of nitric oxide (NO) 5.3 μm emissions in the thermosphere measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) spectrometer and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) radiometer satellite instruments was conducted for nighttime data collected on 14 June 2003. The agreement between the data sets was very good, within ∼25% over the entire latitude range studied from −58° to + 4°. The MIPAS and SABER data were inverted to retrieve NO volume emission rates. Spectral fitting of the MIPAS data was used to determine the NO(v = 1) rotational and spin-orbit temperatures, which were found to be in nonlocal thermodynamic equilibrium (non-LTE) above 110 km. Near 110 km the rotational and spin-orbit temperatures converged, indicating the onset of equilibrium in agreement with the results of non-LTE modeling. Because of the onset of equilibrium the NO rotational and spin-orbit temperatures can be used to estimate the kinetic temperature near 110 km. The results indicate that the atmospheric model NRLMSISE-00 underestimates the kinetic temperature near 110 km for the locations investigated. The SABER instrument 5.3 μm band filter cuts off a significant fraction of the NO(Δv = 1) band, and therefore modeling of NO is necessary to predict the total band radiance. The needed correction factors were directly determined from the MIPAS data, providing validation of the modeled values used in SABER operational data processing. The correction factors were applied to the SABER data to calculate densities of NO(v = 1). A feasibility study was also conducted to investigate the use of NO 5.3 μm emission data to derive NO(v = 0) densities in the thermosphere.
  •  
16.
  • Winick, Jeremy R., et al. (författare)
  • Thermospheric infrared radiance response to the April 2002 geomagnetic storm from SABER infrared and GUVI ultraviolet limb data
  • 2004
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 5235, s. 250-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The SABER instrument on TIMED continuously measures certain infrared limb radiance profiles with unprecedented sensitivity. Among these are emissions of CO 2 v 3 at 4.3 μm, routinely recorded to tangent heights of ∼140-150 km, and NO at 5.3 μm, seen to above 200 km. Both of these are greatly enhanced during periods of strong auroral activity, when they can be measured to ∼200 km and ∼300 km, respectively. We use these infrared channels of SABER and coincident far ultraviolet (FUV) measurements from GUVI on TIMED, to study the geomagnetic storm of April 2002. These all give a consistent measure of auroral energy input into the lower thermosphere at high latitudes. Emission in yet another SABER channel, near 2.0 μm, correlates well with enhanced electron energy deposition. We also have, in the 5.3-μm emissions from the long-lived population of aurorally produced NO, a tracer of how this energy is transported equatorward and released over an extended period of time, a few days. In this paper, we discuss the global patterns of energy deposition into the expanded auroral oval, its transport to lower latitudes, and its loss as revealed by the NO 5.3-μm emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy