SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Modak Angshuman 1987 ) "

Sökning: WFRF:(Modak Angshuman 1987 )

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fiedler, Stephanie, et al. (författare)
  • Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP
  • 2024
  • Ingår i: Geoscientific Model Development. - 1991-959X .- 1991-9603. ; 17:6, s. 2387-2417
  • Forskningsöversikt (refereegranskat)abstract
    • The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between atmospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specializations across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation–response paradigm through multi-model ensembles of Earth system models of varying complexity. We discuss the challenges of gaining insights from Earth system models that face computational and process representation limits and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible and machine learning approaches where they are needed, e.g., for faster and better subgrid-scale parameterizations and pattern recognition in big data. New model constraints can arise from augmented observational products that leverage multiple datasets with machine learning approaches. Future MIPs can develop smart experiment protocols that strive towards an optimal trade-off between the resolution, complexity, and number of simulations and their length and, thereby, help to advance the understanding of climate change and its impacts.
  •  
2.
  • Modak, Angshuman, 1987-, et al. (författare)
  • Better-constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:13, s. 7535-7549
  • Tidskriftsartikel (refereegranskat)abstract
    • The best estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental record of historical warming becomes coherent with other lines of evidence when the dependence of radiative feedback on the pattern of surface temperature change (pattern effect) is incorporated. Pattern effect strength is usually estimated with atmosphere-only model simulations forced with observed historical sea-surface temperature (SST) and sea-ice change and constant pre-industrial forcing. However, recent studies indicate that pattern effect estimates depend on the choice of SST boundary condition dataset, due to differences in the measurement sources and the techniques used to merge and construct them. Here, we systematically explore this dataset dependency by applying seven different observed SST datasets to the MPI-ESM1.2-LR model covering 1871–2017. We find that the pattern effect ranges from -0.01±0.09 to 0.42±0.10 W m−2 K−1 (standard error), whereby the commonly used Atmospheric Model Intercomparison Project II (AMIPII) dataset produces by far the largest estimate. When accounting for the generally weaker pattern effect in MPI-ESM1.2-LR compared to other models, as well as dataset dependency and intermodel spread, we obtain a combined pattern effect estimate of 0.37 W m−2 K−1 [−0.14 to 0.88 W m−2 K−1] (5th–95th percentiles) and a resulting instrumental record ECS estimate of 3.2 K [1.8 to 11.0 K], which as a result of the weaker pattern effect is slightly lower and better constrained than in previous studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy