SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moede T) "

Sökning: WFRF:(Moede T)

  • Resultat 1-50 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jacob, S, et al. (författare)
  • In vivo Ca2+ dynamics in single pancreatic β cells
  • 2020
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 34:1, s. 945-959
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Leibiger, B, et al. (författare)
  • Short-term regulation of insulin gene transcription by glucose
  • 1998
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 95:16, s. 9307-9312
  • Tidskriftsartikel (refereegranskat)abstract
    • Whereas short-term regulation of insulin biosynthesis at the level of translation is well accepted, glucose-dependent transcriptional control is still believed to be a long-term effect occurring after more than 2 hr of glucose stimulation. Because pancreatic β cells are exposed to elevated glucose levels for minutes rather than hours after food uptake, we hypothesized the existence of a short-term transcriptional control. By studying the dynamics of newly synthesized (prepro)insulin RNA and by employing on-line monitoring of gene expression in single, insulin-producing cells, we were able to provide convincing evidence that insulin gene transcription indeed is affected by glucose within minutes. Exposure of insulinoma cells and isolated pancreatic islets to elevated glucose for only 15 min resulted in a 2- to 5-fold elevation in (prepro)insulin mRNA levels within 60–90 min. Similarly, insulin promoter-driven green fluorescent protein expression in single insulin-producing cells was significantly enhanced after transient glucose stimulation. Thus, short-term signaling, such as that involved in insulin secretion, also may regulate insulin gene transcription.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Gu, WQ, et al. (författare)
  • Pancreatic β Cells Inhibit Glucagon Secretion from α Cells: An In Vitro Demonstration of α-β Cell Interaction
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between endocrine α and β cells are critical to their secretory function in vivo. The interactions are highly regulated, although yet to be fully understood. In this study, we aim to assess the impact of α and β cell co-culture on hormone secretion. Mouse clonal cell lines α-TC6-1 (α cell line) and MIN-6 (β cell line) were cultured independently or in combination in a medium containing 5.5, 11.1, or 25 mM glucose, respectively. After 72 h, hormone release was measured using insulin and glucagon secretion assays, the cell distribution was visualized by inverted microscopy and an immunocytochemistry assay, and changes in gene expressions were assessed using the RT-PCR technique. The co-culture of the two cell lines caused a decrease in glucagon secretion from α-TC1-6 cells, while no effect on insulin secretion from MIN-6 cells was revealed. Both types of cells were randomly scattered throughout the culture flask, unlike in mice islets in vivo where β cells cluster in the core and α cells are localized at the periphery. During the α–β cell co-culture, the gene expression of glucagon (Gcg) decreased significantly. We conclude that islet β cells suppress glucagon secretion from α cells, apparently via direct cell-to-cell contact, of which the molecular mechanism needs further verification.
  •  
8.
  • Heitz, BA, et al. (författare)
  • Expression of truncated Kir6.2 promotes insertion of functionally inverted ATP-sensitive K+ channels
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 21539-
  • Tidskriftsartikel (refereegranskat)abstract
    • ATP-sensitive K+ (KATP) channels couple cellular metabolism to electrical activity in many cell types. Wild-type KATP channels are comprised of four pore forming (Kir6.x) and four regulatory (sulfonylurea receptor, SURx) subunits that each contain RKR endoplasmic reticulum retention sequences that serve to properly translocate the channel to the plasma membrane. Truncated Kir6.x variants lacking RKR sequences facilitate plasma membrane expression of functional Kir6.x in the absence of SURx; however, the effects of channel truncation on plasma membrane orientation have not been explored. To investigate the role of truncation on plasma membrane orientation of ATP sensitive K+ channels, three truncated variants of Kir6.2 were used (Kir6.2ΔC26, 6xHis-Kir6.2ΔC26, and 6xHis-EGFP-Kir6.2ΔC26). Oocyte expression of Kir6.2ΔC26 shows the presence of a population of inverted inserted channels in the plasma membrane, which is not present when co-expressed with SUR1. Immunocytochemical staining of intact and permeabilized HEK293 cells revealed that the N-terminus of 6xHis-Kir6.2ΔC26 was accessible on both sides of the plasma membrane at roughly equivalent ratios, whereas the N-terminus of 6xHis-EGFP-Kir6.2Δ26 was only accessible on the intracellular face. In HEK293 cells, whole-cell electrophysiological recordings showed a ca. 50% reduction in K+ current upon addition of ATP to the extracellular solution for 6xHis-Kir6.2ΔC26, though sensitivity to extracellular ATP was not observed in 6xHis-EGFP-Kir6.2ΔC26. Importantly, the population of channels that is inverted exhibited similar function to properly inserted channels within the plasma membrane. Taken together, these data suggest that in the absence of SURx, inverted channels can be formed from truncated Kir6.x subunits that are functionally active which may provide a new model for testing pharmacological modulators of Kir6.x, but also indicates the need for added caution when using truncated Kir6.2 mutants.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Kaufmann, J., et al. (författare)
  • Noradrenaline enhances angiotensin II responses via p38 MAPK activation after hypoxia/re-oxygenation in renal interlobar arteries
  • 2015
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 213:4, s. 920-932
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Hypoxia and sympathetic activation are main factors in the pathogenesis of acute kidney injury (AKI). We tested the hypothesis that noradrenaline (NE) in combination with hypoxia aggravates the vasoreactivity of renal arteries after hypoxia/re-oxygenation (H/R). We tested the role of adrenergic receptors and p38 MAPK using an in vitro H/R protocol. Methods: Mouse interlobar arteries (ILA) and afferent arterioles (AA) were investigated under isometric and isotonic conditions respectively. The in vitro protocol consisted of 60-min hypoxia and control condition, respectively, 10-min re-oxygenation followed by concentration-response curves for Ang II or endothelin. Results: Hypoxia reduced the response to Ang II. Hypoxia and NE (10(-9) mol L-1) together increased it in ILA and AA. In ILA, NE alone influenced neither Ang II responses under control conditions nor endothelin responses after hypoxia. Prazosin or yohimbine treatment did not significantly influence the NE+hypoxia effect. The combination of prazosin and yohimbine or propranolol alone inhibited the effect of NE+hypoxia. BRL37344 (beta(3) receptor agonist) mimicked the NE effect. In contrast, the incubation with beta(3) receptor blocker did not influence the mentioned effect. Phosphorylation of p38 MAPK and MLC(20) was increased after H/R with NE and Ang II treatment. The selective p38 MAPK inhibitor SB202190 blocked the NE+hypoxia effect on the Ang II response. Conclusion: The results suggest an interaction of NE and hypoxia in enhancing vasoreactivity, which may be important for the pathogenesis of AKI. The effect of NE+hypoxia in ILA is mediated by several adrenergic receptors and requires the p38 MAPK activation.
  •  
13.
  •  
14.
  •  
15.
  • Leibiger, B, et al. (författare)
  • Ectopic Leptin Production by Intraocular Pancreatic Islet Organoids Ameliorates the Metabolic Phenotype of ob/ob Mice
  • 2021
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The pancreatic islets of Langerhans consist of endocrine cells that secrete peptide hormones into the blood circulation in response to metabolic stimuli. When transplanted into the anterior chamber of the eye (ACE), pancreatic islets engraft and maintain morphological features of native islets as well as islet-specific vascularization and innervation patterns. In sufficient amounts, intraocular islets are able to maintain glucose homeostasis in diabetic mice. Islet organoids (pseudo-islets), which are formed by self-reassembly of islet cells following disaggregation and genetic manipulation, behave similarly to native islets. Here, we tested the hypothesis that genetically engineered intraocular islet organoids can serve as production sites for leptin. To test this hypothesis, we chose the leptin-deficient ob/ob mouse as a model system, which becomes severely obese, hyperinsulinemic, hyperglycemic, and insulin resistant. We generated a Tet-OFF-based beta-cell-specific adenoviral expression construct for mouse leptin, which allowed efficient transduction of native beta-cells, optical monitoring of leptin expression by co-expressed fluorescent proteins, and the possibility to switch-off leptin expression by treatment with doxycycline. Intraocular transplantation of islet organoids formed from transduced islet cells, which lack functional leptin receptors, to ob/ob mice allowed optical monitoring of leptin expression and ameliorated their metabolic phenotype by improving bodyweight, glucose tolerance, serum insulin, and C-peptide levels.
  •  
16.
  • Leibiger, B, et al. (författare)
  • Glucagon regulates its own synthesis by autocrine signaling
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:51, s. 20925-20930
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptide hormones are powerful regulators of various biological processes. To guarantee continuous availability and function, peptide hormone secretion must be tightly coupled to its biosynthesis. A simple but efficient way to provide such regulation is through an autocrine feedback mechanism in which the secreted hormone is “sensed” by its respective receptor and initiates synthesis at the level of transcription and/or translation. Such a secretion–biosynthesis coupling has been demonstrated for insulin; however, because of insulin’s unique role as the sole blood glucose-decreasing peptide hormone, this coupling is considered an exception rather than a more generally used mechanism. Here we provide evidence of a secretion–biosynthesis coupling for glucagon, one of several peptide hormones that increase blood glucose levels. We show that glucagon, secreted by the pancreatic α cell, up-regulates the expression of its own gene by signaling through the glucagon receptor, PKC, and PKA, supporting the more general applicability of an autocrine feedback mechanism in regulation of peptide hormone synthesis.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Leibiger, B, et al. (författare)
  • Short-term regulation of insulin gene transcription
  • 2002
  • Ingår i: Biochemical Society transactions. - : Portland Press Ltd.. - 0300-5127 .- 1470-8752. ; 30:2, s. 312-317
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-term regulation of insulin gene transcription is still a matter of debate. However, an increasing body of evidence shows that insulin gene transcription is affected by signals, such as incretins, glucose metabolites, intracellular Ca2+, and by insulin secreted from pancreatic β-cells, all supporting the concept of an immediate response resulting in insulin gene transcription following food-uptake. The present review aims to summarize the current view on the mechanisms underlying the up-regulation of insulin gene transcription in response to glucose, the major nutrient factor in insulin secretion and biosynthesis.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Mir-Coll, J, et al. (författare)
  • Human Islet Microtissues as an In Vitro and an In Vivo Model System for Diabetes
  • 2021
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of pancreatic β-cell function is a critical event in the pathophysiology of type 2 diabetes. However, studies of its underlying mechanisms as well as the discovery of novel targets and therapies have been hindered due to limitations in available experimental models. In this study we exploited the stable viability and function of standardized human islet microtissues to develop a disease-relevant, scalable, and reproducible model of β-cell dysfunction by exposing them to long-term glucotoxicity and glucolipotoxicity. Moreover, by establishing a method for highly-efficient and homogeneous viral transduction, we were able to monitor the loss of functional β-cell mass in vivo by transplanting reporter human islet microtissues into the anterior chamber of the eye of immune-deficient mice exposed to a diabetogenic diet for 12 weeks. This newly developed in vitro model as well as the described in vivo methodology represent a new set of tools that will facilitate the study of β-cell failure in type 2 diabetes and would accelerate the discovery of novel therapeutic agents.
  •  
34.
  •  
35.
  • Moede, T, et al. (författare)
  • Alpha cell regulation of beta cell function
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 63:10, s. 2064-2075
  • Tidskriftsartikel (refereegranskat)abstract
    • The islet of Langerhans is a complex endocrine micro-organ consisting of a multitude of endocrine and non-endocrine cell types. The two most abundant and prominent endocrine cell types, the beta and the alpha cells, are essential for the maintenance of blood glucose homeostasis. While the beta cell produces insulin, the only blood glucose-lowering hormone of the body, the alpha cell releases glucagon, which elevates blood glucose. Under physiological conditions, these two cell types affect each other in a paracrine manner. While the release products of the beta cell inhibit alpha cell function, the alpha cell releases factors that are stimulatory for beta cell function and increase glucose-stimulated insulin secretion. The aim of this review is to provide a comprehensive overview of recent research into the regulation of beta cell function by alpha cells, focusing on the effect of alpha cell-secreted factors, such as glucagon and acetylcholine. The consequences of differences in islet architecture between species on the interplay between alpha and beta cells is also discussed. Finally, we give a perspective on the possibility of using an in vivo imaging approach to study the interactions between human alpha and beta cells under in vivo conditions.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  • Moede, T, et al. (författare)
  • Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 20145-
  • Tidskriftsartikel (refereegranskat)abstract
    • The secretion of glucagon by pancreatic alpha cells is regulated by a number of external and intrinsic factors. While the electrophysiological processes linking a lowering of glucose concentrations to an increased glucagon release are well characterized, the evidence for the identity and function of the glucose sensor is still incomplete. In the present study we aimed to address two unsolved problems: (1) do individual alpha cells have the intrinsic capability to regulate glucagon secretion by glucose, and (2) is glucokinase the alpha cell glucose sensor in this scenario. Single cell RT-PCR was used to confirm that glucokinase is the main glucose-phosphorylating enzyme expressed in rat pancreatic alpha cells. Modulation of glucokinase activity by pharmacological activators and inhibitors led to a lowering or an increase of the glucose threshold of glucagon release from single alpha cells, measured by TIRF microscopy, respectively. Knockdown of glucokinase expression resulted in a loss of glucose control of glucagon secretion. Taken together this study provides evidence for a crucial role of glucokinase in intrinsic glucose regulation of glucagon release in rat alpha cells.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 61

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy