SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mohammed Shobrak) "

Sökning: WFRF:(Mohammed Shobrak)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • AlRashidi, Monif, et al. (författare)
  • Habitat selection by the Spiny-tailed lizard (Uromastyx aegyptia) : A view from spatial analysis
  • 2021
  • Ingår i: Saudi Journal of Biological Sciences. - : Elsevier. - 1319-562X. ; 28:9, s. 5034-5041
  • Tidskriftsartikel (refereegranskat)abstract
    • Many factors affect the habitat selection for animal species, which in turn may greatly affect their distribution in different ecosystems. Understanding the processes that affect habitat selection is also critical for guiding and managing conservation initiatives. Our study aimed to assess the habitat selection by free-ranging Spiny-tailed lizard (Uromastyx aegyptia) by analyzing a geospatial data connecting its burrow parameters to different habitat characteristics within selected sites in Hail region, Saudi Arabia. We examined evidence and patterns of significant spatial clustering for (366) active burrows by linking their parameters (burrow entrance size, burrow entrance width and burrow entrance height), their reference geographical locations and, two habitat characteristics defined by soil type and vegetation cover. The objective of the analysis was to increase the understanding on the burrows aggregation process in the space and, to describe its possible relation to other spatial habitat configurations. Analysis of distances based on the Nearest Neighbor Index (NNI) and hotspots detection in Nearest neighbor hierarchical clustering (Nnh) suggested twelve (12) spatial clusters located within the study area. In addition, a spatial ordinary least square (OLS) and Poisson regression models revealed significant effects of soil type and vegetation cover on burrow parameters (OLS, p < 0.05; Poisson, p < 0.001), which indicate a strong association between burrows parameters and habitats characteristics. Findings from the study also suggest that other factors such as elevations, highways, and human settlement concentration spots could possibly play a major role in defining burrow spatial aggregation and furthermore have a significant impact on habitat selection.
  •  
2.
  • Nicholas P.C., Horrocks, et al. (författare)
  • Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life
  • 2015
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 1432-1939 .- 0029-8549. ; 177:1, s. 281-290
  • Tidskriftsartikel (refereegranskat)abstract
    • Investment in immune defences is predicted to covary with a variety of ecologically and evolutionarily relevant axes, with pace of life and environmental antigen exposure being two examples. These axes may themselves covary directly or inversely, and such relationships can lead to conflicting predictions regarding immune investment. If pace of life shapes immune investment then, following life history theory, slow-living, arid zone and tropical species should invest more in immunity than fast-living temperate species. Alternatively, if antigen exposure drives immune investment, then species in antigen-rich tropical and temperate environments are predicted to exhibit higher immune indices than species from antigen-poor arid locations. To test these contrasting predictions we investigated how variation in pace of life and antigen exposure influence immune investment in related lark species (Alaudidae) with differing life histories and predicted risks of exposure to environmental microbes and parasites. We used clutch size and total number of eggs laid per year as indicators of pace of life, and aridity, and the climatic variables that influence aridity, as correlates of antigen abundance. We quantified immune investment by measuring four indices of innate immunity. Pace of life explained little of the variation in immune investment, and only one immune measure correlated significantly with pace of life, but not in the predicted direction. Conversely, aridity, our proxy for environmental antigen exposure, was predictive of immune investment, and larks in more mesic environments had higher immune indices than those living in arid, low-risk locations. Our study suggests that abiotic environmental variables with strong ties to environmental antigen exposure can be important correlates of immunological variation.
  •  
3.
  • van Veelen, H. Pieter J., et al. (författare)
  • Cloacal microbiota are biogeographically structured in larks from desert, tropical and temperate areas
  • 2023
  • Ingår i: BMC Microbiology. - : Springer Science and Business Media LLC. - 1471-2180. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In contrast with macroorganisms, that show well-documented biogeographical patterns in distribution associated with local adaptation of physiology, behavior and life history, strong biogeographical patterns have not been found for microorganisms, raising questions about what determines their biogeography. Thus far, large-scale biogeographical studies have focused on free-living microbes, paying little attention to host-associated microbes, which play essential roles in physiology, behavior and life history of their hosts. Investigating cloacal gut microbiota of closely-related, ecologically similar free-living songbird species (Alaudidae, larks) inhabiting desert, temperate and tropical regions, we explored influences of geographical location and host species on α-diversity, co-occurrence of amplicon sequence variants (ASVs) and genera, differentially abundant and dominant bacterial taxa, and community composition. We also investigated how geographical distance explained differences in gut microbial community composition among larks. RESULTS: Geographic location did not explain variation in richness and Shannon diversity of cloacal microbiota in larks. Out of 3798 ASVs and 799 bacterial genera identified, 17 ASVs (< 0.5%) and 43 genera (5%) were shared by larks from all locations. Desert larks held fewer unique ASVs (25%) than temperate zone (31%) and tropical larks (34%). Five out of 33 detected bacterial phyla dominated lark cloacal gut microbiomes. In tropical larks three bacterial classes were overrepresented. Highlighting the distinctiveness of desert lark microbiota, the relative abundances of 52 ASVs differed among locations, which classified within three dominant and 11 low-abundance phyla. Clear and significant phylogenetic clustering in cloacal microbiota community composition (unweighted UniFrac) showed segregation with geography and host species, where microbiota of desert larks were distinct from those of tropical and temperate regions. Geographic distance was nonlinearly associated with pairwise unweighted UniFrac distances. CONCLUSIONS: We conclude that host-associated microbiota are geographically structured in a group of widespread but closely-related bird species, following large-scale macro-ecological patterns and contrasting with previous findings for free-living microbes. Future work should further explore if and to what extent geographic variation in host-associated microbiota can be explained as result of co-evolution between gut microbes and host adaptive traits, and if and how acquisition from the environmental pool of bacteria contributes to explaining host-associated communities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy