SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Momany A.) "

Sökning: WFRF:(Momany A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, G., et al. (författare)
  • Genetic Associations with Gestational Duration and Spontaneous Preterm Birth
  • 2017
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 377:12, s. 1156-1167
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (< 37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P< 5.0x10(-8)) or an association with suggestive significance (P< 1.0x10(-6)) in the discovery set. In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement.
  •  
2.
  • Bazooyar, Faranak, 1972, et al. (författare)
  • Validating empirical force fields for molecular-level simulation of cellulose dissolution
  • 2012
  • Ingår i: Computational and Theoretical Chemistry. - : Elsevier BV. - 2210-271X .- 2210-2728. ; 984, s. 119-127
  • Tidskriftsartikel (refereegranskat)abstract
    • The calculations presented here, which include dynamics simulations using molecular mechanics force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of these force fields was assessed by comparing structures and energies of cellobiose, which is the shortest cellulose chain, obtained from the force fields with those obtained from MP2 and DFT methods. In agreement with the first principles methods, COMPASS is the only force field of the three studied here that favors the anti form of cellobiose in the vacuum. This force field was also used to compare changes in energies when hydrating cellobiose with 1-4 water molecules. Although the COMPASS force field does not yield the change from anti to syn minimum energy structure when hydrating with h more than two water molecules - as predicted by OFT - it does predict that the syn conformer is preferred when simulating cellobiose in bulk liquid water and at temperatures relevant to cellulose dissolution. This indicates that the COMPASS force field yields valid structures of cellulose under these conditions. Simulations based on the COMPASS force field show that, due to entropic effects, the syn form of cellobiose is energetically preferred at elevated temperature, both in vacuum and in bulk water. This is also in agreement with DFT calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy