SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Montano Giorgia) "

Sökning: WFRF:(Montano Giorgia)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Montano, Giorgia, et al. (författare)
  • Role of WT1-ZNF224 interaction in the expression of apoptosis-regulating genes
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:9, s. 1771-1782
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor Wilms tumor gene 1, WT1, is implicated both in normal developmental processes and in the generation of a variety of solid tumors and hematological malignancies. Physical interactions of other cellular proteins with WT1 are known to modulate its function. We previously identified the Krppel-like zinc-finger protein, ZNF224, as a novel human WT1-associating protein that enhances the transcriptional activation of the human vitamin D receptor promoter by WT1. Here, we have analyzed the effects of WT1ZNF224 interaction on the expression of apoptosis-regulating genes in the chronic myelogenous leukemia (CML) K562 cell line. The results demonstrated that ZNF224 acts in fine tuning of WT1-dependent control of gene expression, acting as a co-activator of WT1 in the regulation of proapoptotic genes and suppressing WT1 mediated transactivation of antiapoptotitc genes. Moreover, the DNA damaging drug cytosine arabinoside (ara-C) induces expression of ZNF224 in K562 cells and this induction enhances cell apoptotic response to ara-C. These findings suggest that ZNF224 can be a mediator of DNA damage-induced apoptosis in leukemia cells.
  •  
3.
  •  
4.
  • Montano, Giorgia, et al. (författare)
  • The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein.
  • 2016
  • Ingår i: Leukemia Research: A Forum for Studies on Leukemia and Normal Hemopoiesis. - : Elsevier BV. - 1873-5835. ; 40:1, s. 60-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter.
  •  
5.
  • Montano, Giorgia, et al. (författare)
  • WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene.
  • 2015
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 29:6, s. 37-28223
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kruppel-like protein ZNF224 is a co-factor of the Wilms' tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment. We also show that WT1, whose expression is positively regulated by BCR-ABL, represses transcription of the ZNF224 gene. Finally, we report that ZNF224 is significantly down-regulated in patients with BCR-ABL positive chronic phase-CML showing poor response or resistance to imatinib treatment as compared to high-responder patients. Taken as a whole, our data disclose a novel pathway activated by BCR-ABL that leads to inhibition of apoptosis through the ZNF224 repression. ZNF224 could thus represent a novel promising therapeutic target in CML.
  •  
6.
  • Nilsson, Helena Jernmark, et al. (författare)
  • The transcriptional coregulator NAB2 is a target gene for the Wilms' tumor gene 1 protein (WT1) in leukemic cells
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:50, s. 87136-87150
  • Tidskriftsartikel (refereegranskat)abstract
    • The Wilms' tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.
  •  
7.
  • Sodaro, Gaetano, et al. (författare)
  • Role of ZNF224 in c-Myc repression and imatinib responsiveness in chronic myeloid leukemia
  • 2018
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 9:3, s. 3417-3431
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor ZNF224 plays a key proapoptotic role in chronic myelogenous leukemia (CML), by modulating Wilms Tumor protein 1 (WT1) dependent apoptotic genes transcription. Recently, we demonstrated that Bcr-Abl signaling represses ZNF224 expression in Bcr-Abl positive CML cell lines and in CML patients. Interestingly, Imatinib and second-generation tyrosine kinase inhibitors specifically increase ZNF224 expression. On the other hand, Bcr-Abl positively modulates, via JAK2 activation, the expression of the c-Myc oncogene, which is required for Bcr-Abl oncogenic transformation in CML. Consequently, JAK2 inhibitors represent promising molecular therapeutic tools in CML. In this work, we demonstrate that ZNF224 is a novel transcriptional repressor of c-Myc in CML. We also show that ZNF224 induction by Imatinib and AG490, a specific JAK2 inhibitor, is responsible for the transcriptional repression of c-MYC, thus highlighting the crucial role of the ZNF224/c-Myc axis in Imatinib responsiveness. Interestingly, we also report that ZNF224 is induced by AG490 in Imatinibresistant CML cells, leading to c-Myc repression and apoptosis induction. These findings suggest that the development of molecular tools able to induce ZNF224 expression could provide promising means to bypass Imatinib resistance in CML.
  •  
8.
  • Ullmark, Tove, et al. (författare)
  • Anti-apoptotic quinolinate phosphoribosyltransferase (QPRT) is a target gene of Wilms' tumor gene 1 (WT1) protein in leukemic cells
  • 2017
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 0006-291X. ; 482:4, s. 802-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms' tumor gene 1 (WT1) is a zinc finger transcription factor that has been implicated as an oncogene in leukemia and several other malignancies. When investigating possible gene expression network partners of . WT1 in a large acute myeloid leukemia (AML) patient cohort, one of the genes with the highest correlation to . WT1 was quinolinate phosphoribosyltransferase (QPRT), a key enzyme in the . de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway. To investigate the possible relationship between . WT1 and . QPRT, we overexpressed . WT1 in hematopoietic progenitor cells and cell lines, resulting in an increase of . QPRT expression. WT1 knock-down gave a corresponding decrease in . QPRT gene and protein expression. Chromatin-immunoprecipitation revealed WT1 binding to a conserved site in the first intron of the . QPRT gene. Upon overexpression in leukemic K562 cells, QPRT conferred partial resistance to the anti-leukemic drug imatinib, indicating possible anti-apoptotic functions, consistent with previous reports on glioma cells. Interestingly, the rescue effect of QPRT overexpression was not correlated to increased NAD + levels, suggesting NAD + independent mechanisms. We conclude that . QPRT, encoding a protein with anti-apoptotic properties, is a novel and direct target gene of WT1 in leukemic cells.
  •  
9.
  • Ullmark, Tove, et al. (författare)
  • Distinct global binding patterns of the Wilms' tumor gene 1 (WT1) -KTS and +KTS isoforms in leukemic cells
  • 2017
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 102:2, s. 336-345
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc finger transcription factor Wilms' tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (+/-KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of WT1 -KTS at the expense of WT1 +KTS isoform associates with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing (ChIP-seq). Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is rather enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with involvement of WT1 in acute myeloid leukemia.
  •  
10.
  • Ullmark, Tove, et al. (författare)
  • DNA and RNA binding by the Wilms' tumour gene 1 (WT1) protein +KTS and −KTS isoforms—From initial observations to recent global genomic analyses
  • 2018
  • Ingår i: European Journal of Haematology. - : Wiley. - 0902-4441. ; 100:3, s. 229-240
  • Forskningsöversikt (refereegranskat)abstract
    • The Wilms' tumour gene 1 protein (WT1) is a zinc finger transcription factor found indispensable for foetal development. WT1 has also been implicated in the development of tumours in several organ systems, including acute myeloid leukaemia (AML). Four main WT1 isoforms come from 2 alternative splice events. One alternative splice results in the inclusion or exclusion of 3 amino acids, KTS, between zinc fingers 3 and 4 in the WT1 protein. The KTS insert has been extensively investigated due to the functional implications for DNA and RNA binding. In this review, we provide an overview of the research into the isoforms containing or lacking the KTS insert in leukaemic cells, as well as the research into the binding patterns of the WT1 −KTS and +KTS isoforms to DNA and RNA. Finally, we connect the results of the DNA binding research to the ChIP-CHIP and ChIP-Seq investigations into the global genomic binding of the WT1 protein that have recently been performed.
  •  
11.
  • Ullmark, Tove, et al. (författare)
  • Global binding pattern of the Wilms' tumor gene 1 (WT1) +17AA -KTS isoform in leukemic cells
  • 2016
  • Ingår i: Cancer Research. - 1538-7445. ; 76:14 Suppl.
  • Konferensbidrag (refereegranskat)abstract
    • The aim of this study was to investigate the global DNA-binding pattern of Wilms' tumor gene 1 (WT1) in leukemic cells. Clinical and preclinical data indicate the zinc finger transcription factor WT1 as an oncogene, but the full target gene repertoire of WT1 in leukemic cells has not been previously characterized. The -KTS isoforms (excluding the three amino acid (KTS) insert between zinc finger three and four) are considered as the most efficient DNA-binders. Among these, the 17AA isoform (including 17 amino acids encoded by exon 5) is the most abundant one. To specifically analyze the DNA-binding of WT1(+17AA/-KTS) in leukemic cells, we generated a K562 clone that stably expressed BIO-tagged WT1(+17AA/-KTS), as well as the biotinylating enzyme Bir A. From the cells chromatin immunoprecipitation (ChIP) by streptavidin capture was performed followed by sequencing with a minimum of 50 million reads per sample. After alignment to the genome and peak calling, peaks were characterized and compared to available K562 tracks in the ENCODE database. We found that 45% of identified WT1(+17AA/-KTS) peaks are in the proximity of transcription start sites (promoter area, first exon or first intron) of target genes, whereas only 11% of randomized peaks were found here. Within the peaks we show strong enrichment for three different previously published WT1-binding motifs. Comparison to ENCODE tracks showed that WT1(+17AA/-KTS) peaks are in close proximity to binding sites of other transcription factors, to histone marks for actively transcribed genes, and to binding sites of chromatin modifiers. Considering peaks within promoters and gene bodies only (for safe assignment to a target gene), Gene Ontology (GO) analysis revealed enrichment of GO groups important for proliferation, cell death, embryonic development, and cell motility. In conclusion, WT1(+17AA/-KTS) binds close to transcription start sites in areas of active transcription. The target genes implicated in proliferation, cell death, cell signaling and motility adds to the growing evidence of WT1 as an effector gene in leukemia.
  •  
12.
  • Vanhee, Stijn, et al. (författare)
  • Lin28b controls a neonatal to adult switch in B cell positive selection
  • 2019
  • Ingår i: Science immunology. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2470-9468. ; 4:39
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5(+) immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19(-/-) adult mice. Thus, the temporally restricted expression of Lin28b relaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.
  •  
13.
  • Vergani, Stefano, et al. (författare)
  • A self-sustaining layer of early-life-origin B cells drives steady-state IgA responses in the adult gut
  • 2022
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613. ; 55:10, s. 6-1842
  • Tidskriftsartikel (refereegranskat)abstract
    • The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.
  •  
14.
  • Åkerstrand, Hugo, et al. (författare)
  • Enhanced protein synthesis is a defining requirement for neonatal B cell development
  • 2023
  • Ingår i: Frontiers in Immunology. - 1664-3224.
  • Tidskriftsartikel (refereegranskat)abstract
    • The LIN28B RNA binding protein exhibits an ontogenically restricted expression pattern and is a key molecular regulator of fetal and neonatal B lymphopoiesis. It enhances the positive selection of CD5+ immature B cells early in life through amplifying the CD19/PI3K/c-MYC pathway and is sufficient to reinitiate self-reactive B-1a cell output when ectopically expressed in the adult. In this study, interactome analysis in primary B cell precursors showed direct binding by LIN28B to numerous ribosomal protein transcripts, consistent with a regulatory role in cellular protein synthesis. Induction of LIN28B expression in the adult setting is sufficient to promote enhanced protein synthesis during the small Pre-B and immature B cell stages, but not during the Pro-B cell stage. This stage dependent effect was dictated by IL-7 mediated signaling, which masked the impact of LIN28B through an overpowering stimulation on the c-MYC/protein synthesis axis in Pro-B cells. Importantly, elevated protein synthesis was a distinguishing feature between neonatal and adult B cell development that was critically supported by endogenous Lin28b expression early in life. Finally, we used a ribosomal hypomorphic mouse model to demonstrate that subdued protein synthesis is specifically detrimental for neonatal B lymphopoiesis and the output of B-1a cells, without affecting B cell development in the adult. Taken together, we identify elevated protein synthesis as a defining requirement for early-life B cell development that critically depends on Lin28b. Our findings offer new mechanistic insights into the layered formation of the complex adult B cell repertoire.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy