SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Montoliu Gaya Laia) "

Sökning: WFRF:(Montoliu Gaya Laia)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alawode, Deborah O T, et al. (författare)
  • Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease.
  • 2021
  • Ingår i: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 290:3, s. 583-601
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology
  • 2024
  • Ingår i: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportancePhosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. ObjectiveTo determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid beta (A beta) and longitudinal change across 3 selected cohorts. Design, Setting, and ParticipantsThis cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. ExposuresMagnetic resonance imaging, A beta positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (A beta 42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and MeasuresAccuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. ResultsThe study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated A beta (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal A beta pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in A beta-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and RelevanceThis study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • Diagnostic accuracy of the plasma ALZpath pTau217 immunoassay to identify Alzheimer's disease pathology.
  • 2023
  • Ingår i: medRxiv : the preprint server for health sciences.
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer's disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests.To determine the utility of a novel and commercially available Single molecule array (Simoa) for plasma pTau217 (ALZpath) to detect AD pathology. To evaluate references ranges for abnormal Aβ across three selected cohorts.Three single-centre observational cohorts were involved in the study: Translational Biomarkers in Aging and Dementia (TRIAD), Wisconsin Registry for Alzheimer's Prevention (WRAP), and Sant Pau Initiative on Neurodegeneration (SPIN). MRI, Aβ-PET, and tau-PET data were available for TRIAD and WRAP, while CSF biomarkers were additionally measured in a subset of TRIAD and SPIN. Plasma measurements of pTau181, pTau217 (ALZpath), pTau231, Aβ42/40, GFAP, and NfL, were available for all cohorts. Longitudinal blood biomarker data spanning 3 years for TRIAD and 8 years for WRAP were included.MRI, Aβ-PET, tau-PET, CSF biomarkers (Aβ42/40 and pTau immunoassays) and plasma pTau217 (ALZpath Simoa).The accuracy of plasma pTau217 for detecting abnormal amyloid and tau pathology. Longitudinal pTau217 change according to baseline pathology status.The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%]) were included in the study. High accuracy was observed in identifying elevated Aβ (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95%CI 0.84-0.99) across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and comparable to CSF biomarkers. The detection of abnormal Aβ pathology using binary or three-range references yielded reproducible results. Longitudinally, plasma pTau217 showed an annual increase only in Aβ-positive individuals, with the highest increase observed in those with tau-positivity.The ALZpath plasma pTau217 Simoa assay accurately identifies biological AD, comparable to CSF biomarkers, with reproducible cut-offs across cohorts. It detects longitudinal changes, including at the preclinical stage, and is the first widely available, accessible, and scalable blood test for pTau217 detection.
  •  
4.
  • Brum, Wagner S., et al. (författare)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
5.
  • Gobom, Johan, et al. (författare)
  • Antibody-free measurement of cerebrospinal fluid tau phosphorylation across the Alzheimer's disease continuum.
  • 2022
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement.We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n=38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p<0.001, AUC=0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n=165) and BioFINDER-2 cohorts (n=563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (<40years), as well as patients with frontotemporal dementia and other neurodegenerative disorders.Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aβ positron emission tomography-positive patients with mild cognitive impairment compared with Aβ-negative controls. For Alzheimer's disease dementia compared with Aβ-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC=98.73%, fold change=7.64; BioFINDER-2: AUC=91.89%, fold change=10.65), pT217 (TRIAD: AUC=99.71%, fold change=6.33; BioFINDER-2: AUC=98.12%, fold change=8.83) and pT205 (TRIAD: AUC=99.07%, fold change=5.34; BioFINDER-2: AUC=93.51%, fold change=3.92). These phospho-epitopes also discriminated between Aβ-positive and Aβ-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC=83.26, fold change=2.39; BioFINDER-2: AUC=91.05%, fold change=3.29), pT231 (TRIAD: AUC=86.25, fold change=3.80; BioFINDER-2: AUC=78.69%, fold change=3.65) and pT205 (TRIAD: AUC=71.58, fold change=1.51; BioFINDER-2: AUC=71.11%, fold change=1.70).While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.
  •  
6.
  • Gonzalez-Ortiz, Fernando, et al. (författare)
  • A novel ultrasensitive assay for plasma p-tau217: Performance in individuals with subjective cognitive decline and early Alzheimer's disease.
  • 2024
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - 1552-5279. ; 20:2, s. 1239-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Detection of Alzheimer's disease (AD) pathophysiology among individuals with mild cognitive changesand those experiencing subjective cognitive decline (SCD) remains challenging. Plasma phosphorylated tau 217 (p-tau217) is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited.We employed a novel p-tau217 immunoassay (University of Gothenburg [UGOT] p-tau217) in four independent cohorts (n=308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired (CU) and mild cognitively impaired (MCI) participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (Barcelonaβeta Brain Research Center's Alzheimer's At-Risk Cohort [β-AARC]).UGOT p-tau217 showed high accuracy (area under the curve [AUC]=0.80-0.91) identifying amyloid beta (Aβ) pathology, determined either by Aβ positron emission tomography or CSF Aβ42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aβ42/40 ratio (AUC=0.91).UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.
  •  
7.
  • Gonzalez-Ortiz, Fernando, et al. (författare)
  • A novel ultrasensitive assay for plasma p-tau217: performance in individuals with subjective cognitive decline and early Alzheimer's disease.
  • 2023
  • Ingår i: medRxiv : the preprint server for health sciences.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Detection of Alzheimer's disease (AD) pathophysiology among cognitively unimpaired individuals and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma p-tau217 is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited.We employed a novel p-tau217 immunoassay (UGOT p-tau217) in four independent cohorts (n=308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (β-AARC).UGOT p-tau217 showed high accuracy (AUC= 0.80-0.91) identifying Aβ pathology, determined either by Aβ positron emission tomography or CSF Aβ42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aβ42/40 ratio (AUC= 0.91).UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.
  •  
8.
  • Huber, Hanna, 1989, et al. (författare)
  • Biomarkers of Alzheimer's disease and neurodegeneration in dried blood spots-A new collection method for remote settings
  • 2024
  • Ingår i: ALZHEIMERS & DEMENTIA. - 1552-5260 .- 1552-5279.
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We aimed to evaluate the precision of Alzheimer's disease (AD) and neurodegeneration biomarker measurements from venous dried plasma spots (DPSvenous) for the diagnosis and monitoring of neurodegenerative diseases in remote settings. METHODS: In a discovery (n = 154) and a validation cohort (n = 115), glial fibrillary acidic protein (GFAP); neurofilament light (NfL); amyloid beta (A beta) 40, A beta 42; and phosphorylated tau (p-tau181 and p-tau217) were measured in paired DPSvenous and ethylenediaminetetraacetic acid plasma samples with single-molecule array. In the validation cohort, a subset of participants (n = 99) had cerebrospinal fluid (CSF) biomarkers. RESULTS: All DPSvenous and plasma analytes correlated significantly, except for A beta 42. In the validation cohort, DPSvenous GFAP, NfL, p-tau181, and p-tau217 differed between CSF A beta-positive and -negative individuals and were associated with worsening cognition. DISCUSSION: Our data suggest that measuring blood biomarkers related to AD pathology and neurodegeneration from DPSvenous extends the utility of blood-based biomarkers to remote settings with simplified sampling conditions, storage, and logistics.
  •  
9.
  • Huber, Hanna, 1989, et al. (författare)
  • Levels of Alzheimer's disease blood biomarkers are altered after food intake-A pilot intervention study in healthy adults
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5531-5540
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONBlood biomarkers accurately identify Alzheimer's disease (AD) pathophysiology and axonal injury. We investigated the influence of food intake on AD-related biomarkers in cognitively healthy, obese adults at high metabolic risk. METHODSOne-hundred eleven participants underwent repeated blood sampling during 3 h after a standardized meal (postprandial group, PG). For comparison, blood was sampled from a fasting subgroup over 3 h (fasting group, FG). Plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), amyloid-beta (A beta) 42/40, phosphorylated tau (p-tau) 181 and 231, and total-tau were measured via single molecule array assays. RESULTSSignificant differences were found for NfL, GFAP, A beta 42/40, p-tau181, and p-tau231 between FG and PG. The greatest change to baseline occurred for GFAP and p-tau181 (120 min postprandially, p < 0.0001). CONCLUSIONOur data suggest that AD-related biomarkers are altered by food intake. Further studies are needed to verify whether blood biomarker sampling should be performed in the fasting state. HighlightsAcute food intake alters plasma biomarkers of Alzheimer's disease in obese, otherwise healthy adults.We also found dynamic fluctuations in plasma biomarkers concentration in the fasting state suggesting physiological diurnal variations.Further investigations are highly needed to verify if biomarker measurements should be performed in the fasting state and at a standardized time of day to improve the diagnostic accuracy.
  •  
10.
  • Kac, Przemyslaw R., et al. (författare)
  • Plasma p-tau212: antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology.
  • 2023
  • Ingår i: medRxiv : the preprint server for health sciences.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.
  •  
11.
  • Kac, Przemyslaw R., 1995, et al. (författare)
  • Plasma p-tau212 antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.
  •  
12.
  • Karikari, Thomas, et al. (författare)
  • Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility
  • 2022
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 18, s. 400-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent technological advances have enabled the detection of specific forms of phosphorylated tau in blood. Here, the authors summarize the performance of blood phosphorylated tau biomarkers in the context of Alzheimer disease and highlight related ethical, analytical and clinical challenges. Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.
  •  
13.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Clinical performance and head-to-head comparison of CSF p-tau235 with p-tau181, p-tau217 and p-tau231 in two memory clinic cohorts
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cerebrospinal fluid (CSF) p-tau235 is a novel biomarker highly specific of Alzheimer's disease (AD). However, CSF p-tau235 has only been studied in well-characterized research cohorts, which do not fully reflect the patient landscape found in clinical settings. Therefore, in this multicentre study, we investigated the performance of CSF p-tau235 to detect symptomatic AD in clinical settings and compared it with CSF p-tau181, p-tau217 and p-tau231.Methods CSF p-tau235 was measured using an in-house single molecule array (Simoa) assay in two independent memory clinic cohorts: Paris cohort (Lariboisiere Fernand-Widal University Hospital Paris, France; n=212) and BIODEGMAR cohort (Hospital del Mar, Barcelona, Spain; n=175). Patients were classified by the syndromic diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI] or dementia) and their biological diagnosis (amyloid-beta [A beta]+ or A beta -) Both cohorts included detailed cognitive assessments and CSF biomarker measurements (clinically validated core AD biomarkers [Lumipulse CSF A beta(1-42/40) ratio, p-tau181 and t-tau] and in-house developed Simoa CSF p-tau181, p-tau217 and p-tau231).Results High CSF p-tau235 levels were strongly associated with CSF amyloidosis regardless of the clinical diagnosis, being significantly increased in MCI A beta+ and dementia A beta+ when compared with all other A beta- groups (Paris cohort: P < 0.0001 for all; BIODEGMAR cohort: P < 0.05 for all). CSF p-tau235 was pronouncedly increased in the A+T+ profile group compared with A-T- and A+T- groups (P < 0.0001 for all). Moreover, CSF p-tau235 demonstrated high diagnostic accuracies identifying CSF amyloidosis in symptomatic cases (AUCs=0.86 to 0.96) and discriminating AT groups (AUCs=0.79 to 0.98). Overall, CSF p-tau235 showed similar performances to CSF p-tau181 and CSF p-tau231 when discriminating CSF amyloidosis in various scenarios, but lower than CSF p-tau217. Finally, CSF p-tau235 associated with global cognition and memory domain in both cohorts.Conclusions CSF p-tau235 was increased with the presence of CSF amyloidosis in two independent memory clinic cohorts. CSF p-tau235 accurately identified AD in both MCI and dementia patients. Overall, the diagnostic performance of CSF p-tau235 was comparable to that of other CSF p-tau measurements, indicating its suitability to support a biomarker-based AD diagnosis in clinical settings.
  •  
14.
  • Lantero Rodriguez, Juan, et al. (författare)
  • CSF p-tau205: a biomarker of tau pathology in Alzheimer's disease.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n=47), an unselected clinical cohort (n=212) and a research cohort well-characterized by fluid and imaging biomarkers (n=262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid(Aβ) and tau pathology positive (A+T+) cases (P<0.01). In A+cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205=0.67, rSp202=0.45) than Aβ-PET (rSp205=0.40, rSp202=0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P<0.01), whereas p-tau202 only increased in Braak V-VI (P<0.0001). Both showed stronger regional associations with tau-PET than with Aβ-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aβ and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2=69.7%; CSF p-tau202: R2=85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205=-0.36, rSp202=-0.33) and regionally, and correlated with cognition (rSp205=-0.38/-0.40, rSp202=-0.20/-0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.
  •  
15.
  • Lantero Rodriguez, Juan, et al. (författare)
  • P-tau235: a novel biomarker for staging preclinical Alzheimer's disease.
  • 2021
  • Ingår i: EMBO molecular medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
  •  
16.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5343-5354
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONFluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODSWe measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (A beta) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTSCSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired A beta-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with A beta PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSIONNTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTSAn assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated.NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration.NTA-tau can successfully track in vivo tau deposition across the AD continuum.Plasma NTA-tau increased over time only in cognitively impaired amyloid-beta positive individuals.
  •  
17.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Plasma N-terminal containing tau fragments (NTA-tau): a biomarker of tau deposition in Alzheimer's Disease
  • 2024
  • Ingår i: MOLECULAR NEURODEGENERATION. - 1750-1326. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-beta (A beta) and tau pathology. However, because these biomarkers are strongly associated with the emergence of A beta pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. Methods NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. Results We demonstrate that plasma NTA-tau increases across the AD continuum, especially during late stages, and displays a moderate-to-strong association with tau-PET (beta = 0.54, p < 0.001) in A beta-positive participants, while weak with A beta-PET (beta = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R-2), while having very low contribution from A beta pathology measured with CSF A beta 42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R-2 = 0.27), steeper atrophy (R-2 >= 0.18) and steeper cognitive decline (R-2 >= 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in A beta positive cognitively unimpaired (beta(std) = 0.16) and impaired (beta(std) = 0.18) at baseline compared to their A beta negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R-2 = 0.21) and cognition (R-2 = 0.20). Conclusion Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful A beta removal.
  •  
18.
  • Mila-Aloma, M., et al. (författare)
  • Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer's disease
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28, s. 1797-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive comparison of Alzheimer's disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early A beta changes, showing promise as markers to enrich a preclinical population for Alzheimer's disease clinical trials Blood biomarkers indicating elevated amyloid-beta (A beta) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient A beta pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and A beta 42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest A beta burden. Plasma p-tau231 and p-tau217 had the strongest association with A beta positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in A beta PET uptake in individuals without overt A beta pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral A beta changes, before overt A beta plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.
  •  
19.
  •  
20.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Blood Biomarkers for Alzheimer's Disease in Down Syndrome
  • 2021
  • Ingår i: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 10:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological evidence suggests that by the age of 40 years, all individuals with Down syndrome (DS) have Alzheimer's disease (AD) neuropathology. Clinical diagnosis of dementia by cognitive assessment is complex in these patients due to the pre-existing and varying intellectual disability, which may mask subtle declines in cognitive functioning. Cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, although accurate, are expensive, invasive, and particularly challenging in such a vulnerable population. The advances in ultra-sensitive detection methods have highlighted blood biomarkers as a valuable and realistic tool for AD diagnosis. Studies with DS patients have proven the potential blood-based biomarkers for sporadic AD (amyloid-beta, tau, phosphorylated tau, and neurofilament light chain) to be useful in this population. In addition, biomarkers related to other pathologies that could aggravate dementia progression-such as inflammatory dysregulation, energetic imbalance, or oxidative stress-have been explored. This review serves to provide a brief overview of the main findings from the limited neuroimaging and CSF studies, outline the current state of blood biomarkers to diagnose AD in patients with DS, discuss possible past limitations of the research, and suggest considerations for developing and validating blood-based biomarkers in the future.
  •  
21.
  • Montoliu-Gaya, Laia, et al. (författare)
  • CA10 regulates neurexin heparan sulfate addition via a direct binding in the secretory pathway
  • 2021
  • Ingår i: Embo Reports. - : EMBO. - 1469-221X .- 1469-3178. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurexins are presynaptic adhesion molecules that shape the molecular composition of synapses. Diversification of neurexins in numerous isoforms is believed to confer synapse-specific properties by engaging with distinct ligands. For example, a subset of neurexin molecules carry a heparan sulfate (HS) glycosaminoglycan that controls ligand binding, but how this post-translational modification is controlled is not known. Here, we observe that CA10, a ligand to neurexin in the secretory pathway, regulates neurexin-HS formation. CA10 is exclusively found on non-HS neurexin and CA10 expressed in neurons is sufficient to suppress HS addition and attenuate ligand binding and synapse formation induced by ligands known to recruit HS. This effect is mediated by a direct interaction in the secretory pathway that blocks the primary step of HS biosynthesis: xylosylation of the serine residue. NMR reveals that CA10 engages residues on either side of the serine that can be HS-modified, suggesting that CA10 sterically blocks xylosyltransferase access in Golgi. These results suggest a mechanism for the regulation of HS on neurexins and exemplify a new mechanism to regulate site-specific glycosylations.
  •  
22.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:6, s. 661-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer & apos;s disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisiere and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials. A mass spectrometric analysis of plasma tau species identifies phosphorylated tau peptides p-tau217, p-tau231 and p-tau205 with distinct correlations with amyloid and tau pathologies and emergences along the AD continuum.
  •  
23.
  • Montoliu-Gaya, Laia, et al. (författare)
  • New mass spectrometry method to simultaneously quantify several tau species in blood
  • 2023
  • Ingår i: NATURE AGING. - 2662-8465. ; 3:6, s. 638-639
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Quantification of tau peptides in blood samples using a new mass spectrometry method suggests that individual phosphorylated tau peptides have distinct patterns of emergence in Alzheimer's disease and differential associations with amyloid and tau pathologies. This method has the potential to stage patients along the disease continuum and for clinical trials.
  •  
24.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Optimal blood tau species for the detection of Alzheimer's disease neuropathology: an immunoprecipitation mass spectrometry and autopsy study.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD=69, non-AD=54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC=89.8), p-tau231 (AUC=83.4), and p-tau205 (AUC=81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR<1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217=15.29, ORp-tau205=5.05 and ORp-tau231=3.86) and Braak staging (ORp-tau217=14.29, ORp-tau205=5.27 and ORp-tau231=4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.
  •  
25.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Plasma and cerebrospinal fluid glial fibrillary acidic protein levels in adults with Down syndrome: a longitudinal cohort study
  • 2023
  • Ingår i: eBioMedicine. - : Elsevier BV. - 2352-3964. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) isa marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. Methods We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universitat, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. Findings This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymp-tomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF A beta changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its con-centrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. Interpretation Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials.
  •  
26.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Production of Therapeutic Single-Chain Variable Fragments (ScFv) in Pichia pastoris
  • 2022
  • Ingår i: Therapeutic Antibodies. Methods and Protocols. Gunnar Houen (red.). - New York, NY : Springer. - 1064-3745. - 9781071614495 ; , s. 151-167
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The interest in the use of monoclonal antibodies as therapeutic molecules has raised in the recent years. Due to their high affinity and specificity towards other biological molecules, antibodies are being widely used to treat a broad range of human diseases such as cancer, rheumatism, and cardiovascular diseases. Currently, the production of IgG-like antibodies is mainly obtained from stable or transient mammalian expression systems that allow proper folding and posttranslational modifications. Despite the technological advances of the last decade, the use of these systems still has a rather high production cost and long processing times. For these reasons, researchers are increasingly interested in alternative antibody production methods as well as alternative antibody formats. Bacterial systems, such as Escherichia coli, are extensively being used for recombinant protein production because their easy manipulation and cheap costs. However, the presence of lipopolysaccharides (LPS) traces in the already fractionated recombinant protein makes these systems not good candidates for the preparation of therapeutic molecules. Yeast systems, such as Pichia pastoris, present the convenient easy manipulation of microbial systems but show some key advantages of eukaryotic expression systems, like improved folding machinery and absence of LPS. They are especially suitable for the production of antibody fragments, which do not need human-like glycosylation, avoiding the high costs of mammalian systems. Here, the protocol for the expression and purification of a single-chain antibody fragment (scFv) in P. pastoris is provided, in deep detail for lab manipulation and briefly for a 5L-bioreactor production. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
  •  
27.
  • Nilsson, Johanna, 1993, et al. (författare)
  • Quantification of SNAP-25 with mass spectrometry and Simoa: a method comparison in Alzheimer's disease
  • 2022
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Synaptic dysfunction and degeneration are central to Alzheimer's disease (AD) and have been found to correlate strongly with cognitive decline. Thus, studying cerebrospinal fluid (CSF) biomarkers reflecting synaptic degeneration, such as the presynaptic protein synaptosomal-associated protein 25 (SNAP-25), is of importance to better understand the AD pathophysiology. Methods We compared a newly developed Single molecule array (Simoa) immunoassay for SNAP-25 with an in-house immunoprecipitation mass spectrometry (IP-MS) method in a well-characterized clinical cohort (n = 70) consisting of cognitively unimpaired (CU) and cognitively impaired (CI) individuals with and without A beta pathology (A beta+ and A beta-). Results A strong correlation (Spearman's rank correlation coefficient (r(s)) > 0.88; p < 0.0001) was found between the Simoa and IP-MS methods, and no statistically significant difference was found for their clinical performance to identify AD pathophysiology in the form of A beta pathology. Increased CSF SNAP-25 levels in CI A beta+ compared with CU A beta- (Simoa, p <= 0.01; IP-MS, p <= 0.05) and CI A beta- (Simoa, p <= 0.01; IP-MS, p <= 0.05) were observed. In independent blood samples (n = 32), the Simoa SNAP-25 assay was found to lack analytical sensitivity for quantification of SNAP-25 in plasma. Conclusions These results indicate that the Simoa SNAP-25 method can be used interchangeably with the IP-MS method for the quantification of SNAP-25 in CSF. Additionally, these results confirm that CSF SNAP-25 is increased in relation to amyloid pathology in the AD continuum.
  •  
28.
  • Roda, A. R., et al. (författare)
  • Amyloid-beta peptide and tau protein crosstalk in Alzheimer's disease
  • 2022
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374. ; 17:8, s. 1666-1674
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is a neurodegenerative disease that accounts for most of the 50-million dementia cases worldwide in 2018. A large amount of evidence supports the amyloid cascade hypothesis, which states that amyloid-beta accumulation triggers tau hyperphosphorylation and aggregation in form of neurofibrillary tangles, and these aggregates lead to inflammation, synaptic impairment, neuronal loss, and thus to cognitive decline and behavioral abnormalities. The poor correlation found between cognitive decline and amyloid plaques, have led the scientific community to question whether amyloid-beta accumulation is actually triggering neurodegeneration in Alzheimer's disease. The occurrence of tau neurofibrillary tangles better correlates to neuronal loss and clinical symptoms and, although amyloid-beta may initiate the cascade of events, tau impairment is likely the effector molecule of neurodegeneration. Recently, it has been shown that amyloid-beta and tau cooperatively work to impair transcription of genes involved in synaptic function and, more importantly, that downregulation of tau partially reverses transcriptional perturbations. Despite mounting evidence points to an interplay between amyloid-beta and tau, some factors could independently affect both pathologies. Thus, the dual pathway hypothesis, which states that there are common upstream triggers causing both amyloid-beta and tau abnormalities has been proposed. Among others, the immune system seems to be strongly involved in amyloid-beta and tau pathologies. Other factors, as the apolipoprotein E epsilon 4 isoform has been suggested to act as a link between amyloid-beta and tau hyperphosphorylation. Interestingly, amyloid-beta-immunotherapy reduces not only amyloid-beta but also tau levels in animal models and in clinical trials. Likewise, it has been shown that tau-immunotherapy also reduces amyloid-beta levels. Thus, even though amyloid-beta immunotherapy is more advanced than tau-immunotherapy, combined amyloid-beta and tau-directed therapies at early stages of the disease have recently been proposed as a strategy to stop the progression of Alzheimer's disease.
  •  
29.
  • Roda, A. R., et al. (författare)
  • Both Amyloid-beta Peptide and Tau Protein Are Affected by an Anti-Amyloid-beta Antibody Fragment in Elderly 3xTg-AD Mice
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 21:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most common dementia worldwide. According to the amyloid hypothesis, the early accumulation of the A beta-peptide triggers tau phosphorylation, synaptic dysfunction, and eventually neuronal death leading to cognitive impairment, as well as behavioral and psychological symptoms of dementia. ScFv-h3D6 is a single-chain variable fragment that has already shown its ability to diminish the amyloid burden in 5-month-old 3xTg-AD mice. However, tau pathology is not evident at this early stage of the disease in this mouse model. In this study, the effects of scFv-h3D6 on A beta and tau pathologies have been assessed in 22-month-old 3xTg-AD mice. Briefly, 3xTg-AD female mice were treated for 2 weeks with scFv-h3D6 and compared with 3xTg-AD and non-transgenic (NTg) mice treated with PBS. The treatment with scFv-h3D6 was unequivocally effective in reducing the area of A beta staining. Furthermore, a tendency for a reduction in tau levels was also observed after treatment that points to the interplay between A beta and tau pathologies. The pro-inflammatory state observed in the 3xTg-AD mice did not progress after scFv-h3D6 treatment. In addition, the treatment did not alter the levels of apolipoprotein E or apolipoprotein J. Thus, a 2-week treatment with scFv-h3D6 was able to reduce AD-like pathology in elderly 3xTg-AD female mice.
  •  
30.
  • Roda, A. R., et al. (författare)
  • The Role of Apolipoprotein E Isoforms in Alzheimer's Disease
  • 2019
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 68:2, s. 459-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD), the most common type of dementia worldwide, is characterized by high levels of amyloid-beta (A beta) peptide and hyperphosphorylated tau protein. Genetically, the epsilon 4 allele of apolipoprotein E (ApoE) has been established as the major risk factor for developing late-onset AD (LOAD), the most common form of the disease. Although the role ApoE plays in AD is still not completely understood, a differential role of its isoforms has long been known. The current review compiles the involvement of ApoE isoforms in amyloid-beta protein precursor transcription, A beta aggregation and clearance, synaptic plasticity, neuroinflammation, lipid metabolism, mitochondrial function, and tau hyperphosphorylation. Due to the complexity of LOAD, an accurate description of the interdependence among all the related molecular mechanisms involved in the disease is needed for developing successful therapies.
  •  
31.
  • Sofou, Kalliopi, et al. (författare)
  • Bi-allelic VPS16 variants limit HOPS/CORVET levels and cause a mucopolysaccharidosis-like disease.
  • 2021
  • Ingår i: EMBO molecular medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysosomal storage diseases, including mucopolysaccharidoses, result from genetic defects that impair lysosomal catabolism. Here, we describe two patients from two independent families presenting with progressive psychomotor regression, delayed myelination, brain atrophy, neutropenia, skeletal abnormalities, and mucopolysaccharidosis-like dysmorphic features. Both patients were homozygous for the same intronic variant in VPS16, a gene encoding a subunit of the HOPS and CORVET complexes. The variant impaired normal mRNA splicing and led to an ~85% reduction in VPS16 protein levels in patient-derived fibroblasts. Levels of other HOPS/CORVET subunits, including VPS33A, were similarly reduced, but restored upon re-expression of VPS16. Patient-derived fibroblasts showed defects in the uptake and endosomal trafficking of transferrin as well as accumulation of autophagosomes and lysosomal compartments. Re-expression of VPS16 rescued the cellular phenotypes. Zebrafish with disrupted vps16 expression showed impaired development, reduced myelination, and a similar accumulation of lysosomes and autophagosomes in the brain, particularly in glia cells. This disorder resembles previously reported patients with mutations in VPS33A, thus expanding the family of mucopolysaccharidosis-like diseases that result from mutations in HOPS/CORVET subunits.
  •  
32.
  • Therriault, Joseph, et al. (författare)
  • Comparison of immunoassay- with mass spectrometry-derived p-tau quantification for the detection of Alzheimer’s disease pathology
  • 2024
  • Ingår i: Molecular Neurodegeneration. - 1750-1326. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. Methods: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland–Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. Results: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. Conclusions: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.
  •  
33.
  • Yakoub, Y., et al. (författare)
  • Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5620-5631
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. Methods: We measured longitudinal changes in plasma amyloid-beta (A beta)(42/40) ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with A beta and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. Results: A beta(42/40) ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) epsilon 4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both A beta-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. Discussion: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33
Typ av publikation
tidskriftsartikel (32)
bokkapitel (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Montoliu-Gaya, Laia (33)
Blennow, Kaj, 1958 (27)
Ashton, Nicholas J. (26)
Zetterberg, Henrik, ... (25)
Lantero Rodriguez, J ... (18)
Karikari, Thomas (15)
visa fler...
Lessa Benedet, André ... (15)
Brum, Wagner S. (11)
Brinkmalm, Gunnar (8)
Snellman, Anniina (6)
Gobom, Johan (6)
Rosa-Neto, Pedro (6)
Kvartsberg, Hlin, 19 ... (5)
Harrison, Peter (4)
Salvadó, Gemma (4)
Suárez-Calvet, Marc (4)
Pascoal, Tharick A (4)
Rahmouni, Nesrine (4)
Stevenson, Jenna (4)
Hansson, Oskar (3)
Janelidze, Shorena (3)
Mattsson-Carlgren, N ... (3)
Suarez-Calvet, M. (3)
Simrén, Joel, 1996 (3)
Vanmechelen, Eugeen (3)
Rosa-Neto, P. (3)
Di Molfetta, Gugliel ... (3)
Tissot, Cecile (3)
Stevenson, J (2)
Stomrud, Erik (2)
Palmqvist, Sebastian (2)
Shekari, Mahnaz (2)
Minguillón, Carolina (2)
Gispert, Juan Doming ... (2)
Alcolea, Daniel (2)
Fortea, Juan (2)
Lleó, Alberto (2)
Lewczuk, Piotr (2)
Carlsson, Cynthia M (2)
Vanmechelen, E (2)
Mroczko, Barbara (2)
Arslan, Burak, 1990 (2)
Resnick, Susan M (2)
Thambisetty, Madhav (2)
Villemagne, Victor L (2)
Grötschel, Lana, 199 ... (2)
Chamoun, M. (2)
Langhough, Rebecca E ... (2)
Cody, Karly (2)
Wilson, Rachael (2)
visa färre...
Lärosäte
Göteborgs universitet (33)
Lunds universitet (3)
Karolinska Institutet (1)
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (32)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy