SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moon Sunwoo) "

Sökning: WFRF:(Moon Sunwoo)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonanomi, N., et al. (författare)
  • Role of fast ion pressure in the isotope effect in JET L-mode plasmas
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.
  •  
2.
  • Cannas, Barbara, et al. (författare)
  • Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET With a Carbon Wall
  • 2019
  • Ingår i: IEEE Transactions on Plasma Science. - : Institute of Electrical and Electronics Engineers (IEEE). - 0093-3813 .- 1939-9375. ; 47:4, s. 1871-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the dynamic characteristics of type-I edge-localized modes (ELM) time series from the JET tokamak, the world's largest magnetic confinement plasma physics experiment, have been investigated through recurrence plots (RPs). The analysis has been focused on RPs of pedestal temperature, line averaged electron density, and outer divertor D-alpha time series during experiments with a carbon wall. The analysis of RPS shows the patterns similar to those characteristics of signals exhibiting type-2 intermittency, in particular, a characteristic kite-like shape; this gives useful hints to model the temperature signal as well as the D-alpha radiation time series, with simple nonlinear maps capturing the nearly periodic behavior of type-I ELMs.
  •  
3.
  • Carvalho, D. D., et al. (författare)
  • Deep neural networks for plasma tomography with applications to JET and COMPASS
  • 2019
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.
  •  
4.
  •  
5.
  • Dittrich, Laura, et al. (författare)
  • Retention of noble and rare isotope gases in plasma-facing components-Experience from the JET tokamak with the ITER-like wall
  • 2023
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 192
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma edge cooling, ion cyclotron wall conditioning and disruption mitigation techniques involve massive gas injection (by puffs or pellets) to the torus. A certain fraction remains in plasma-facing components (PFC) due to co-deposition and implantation. An uncontrolled release/desorption of such retained species affects the stability of plasma operation. The aim of this work was to determine the lateral and depth distribution of noble (3He, 4He, Ne, Ar), seeded (N2, Ne, Ar) and tracer gases (15N, 18O) in PFC retrieved from the JET tokamak with the ITER-Like Wall (JET-ILW) after three experimental campaigns (ILW-1, ILW-2, ILW-3). Results regarding the retention of those gases are shown as well as a comparison to the deuterium retention in the studied areas. Heavy ion elastic recoil detection analysis was used, being the only technique capable of detection and quantitative assessment of all elements, especially low-Z isotopes. Helium was found on the divertor Tile 5, locally up to 44.1015 3He cm-2 and 12.1015 4He cm-2, and on the limiters as well. Neon was found in two positions on the limiters, with up to 10.1015 Ne cm-2 and the 15N tracer on Be limiters exposed to ILW-3. A correlation of N retention with the N seeding rates for each campaign has also been found.
  •  
6.
  •  
7.
  • Eriksson, Frida, 1986, et al. (författare)
  • Interpretative and predictive modelling of Joint European Torus collisionality scans
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.
  •  
8.
  • Fazinic, Stjepko, et al. (författare)
  • Dust Monitors in JET with ITER-like Wall for Diagnosis of Mobilized Particles and Co-Deposited Layers
  • 2022
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 15:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon plates were installed above the inner and outer divertor of the JET with the ITER-like wall (ILW) after the second and third ILW campaigns to monitor dust generation and deposition with the aim to determine the morphology and content of individual particles and co-deposits, including deuterium content. Particular interest was in metal-based particles: Be, W, steel, Cu. Ex-situ examination after two ILW campaigns was performed by a set of microscopy and ion beam methods including micro-beam nuclear reaction analysis and particle-induced X-ray emission. Different categories of Be-rich particles were found: co-deposits peeled-off from plasma-facing components (PFC), complex multi-element spherical objects, and solid metal splashes and regular spherical droplets. The fuel content on the two latter categories was at the level of 1 x 10(16) at/cm(-2) indicating that Be melting and splashing occurred in the very last phase of the second experimental campaign. The splashes adhere firmly to the substrate thus not posing risk of Be dust mobilisation. No tungsten droplets were detected. The only W-containing particles were fragments of tungsten coatings from the divertor tiles.
  •  
9.
  • Fortuna-Zalesna, E., et al. (författare)
  • Dust generation and accumulation in JET-ILW : morphology and stability of co-deposits on main plasma-facing components and wall probes
  • 2021
  • Ingår i: Physica Scripta. - : IOP Publishing. - 0031-8949 .- 1402-4896. ; 96:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust particles and co-deposits were sampled for the first time from beryllium limiters and bulk tungsten divertor (both after ILW-3), and test mirrors from the main chamber after ILW-2 and ILW-3. The focus was on the morphology of molten particles and metal outgrowths. In parallel, the stability of beryllium layers under the impact of hot water was examined on limiters and Be coatings. The study performed by several microscopy methods including SEM, AFM, FIB, TEM and Be-sensitive EDX has revealed: (i) an asymmetric distribution of Be particles with the largest objects (125-550 mu m) on side surfaces of the Be tile: (ii) the presence of highly porous particles, resembling blisters; (iii) very few thin flakes of co-deposits on the divertor, on the shadowed edge of lamella; (iv) the elemental composition and internal structure of the needle-shaped outgrowths on the mirrors: MoO; (v) no detectable impact of water on the beryllium morphology.
  •  
10.
  • Fortuna-Zalesna, E., et al. (författare)
  • Fine metal dust particles on the wall probes from JET-ILW
  • 2017
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T170
  • Tidskriftsartikel (refereegranskat)abstract
    • Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.
  •  
11.
  • Garcia, J., et al. (författare)
  • First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to JET experimental campaigns in H and D by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15 MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.
  •  
12.
  • Goriaev, A., et al. (författare)
  • The upgraded TOMAS device : A toroidal plasma facility for wall conditioning, plasma production, and plasma-surface interaction studies
  • 2021
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 92:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Toroidal Magnetized System device has been significantly upgraded to enable development of various wall conditioning techniques, including methods based on ion and electron cyclotron (IC/EC) range of frequency plasmas, and to complement plasma-wall interaction research in tokamaks and stellarators. The toroidal magnetic field generated by 16 coils can reach its maximum of 125 mT on the toroidal axis. The EC system is operated at 2.45 GHz with up to 6 kW forward power. The IC system can couple up to 6 kW in the frequency range of 10 MHz-50 MHz. The direct current glow discharge system is based on a graphite anode with a maximum voltage of 1.5 kV and a current of 6 A. A load-lock system with a vertical manipulator allows exposure of material samples. A number of diagnostics have been installed: single- and triple-pin Langmuir probes for radial plasma profiles, a time-of-flight neutral particle analyzer capable of detecting neutrals in the energy range of 10 eV-1000 eV, and a quadrupole mass spectrometer and video systems for plasma imaging. The majority of systems and diagnostics are controlled by the Siemens SIMATIC S7 system, which also provides safety interlocks.
  •  
13.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
14.
  • Kovtun, Yu, et al. (författare)
  • Comparative analysis of the plasma parameters of ECR and combined ECR plus RF discharges in the TOMAS plasma facility
  • 2021
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 63:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The toroidal magnetized system (TOMAS) plasma facility aims at complementary research on wall conditioning methods, plasma production and plasma-surface interaction studies. This paper explores for the first time the parameters in helium electron-cyclotron resonance (ECR) plasma and combined ECR + radio-frequency (RF) discharges in TOMAS. The ECR discharge in this work, at 2.45 GHz and 87.6 mT, is the main one for creating and maintaining the plasma, while the addition of RF power at 25 MHz allows to broaden the achievable electron temperature and density at a given gas flow, as evidenced by triple Langmuir probe measurements. This effect of the combined ECR + RF discharge provides flexibility to study particular aspects of wall conditioning techniques relevant to larger devices, or to approach plasma conditions relevant to fusion edge plasmas for particular surface interaction studies.
  •  
15.
  • Kovtun, Yu, et al. (författare)
  • Measurement of hydrogen plasma parameters of the combined ECR+RF discharge in the TOMAS facility
  • 2023
  • Ingår i: 24TH TOPICAL CONFERENCE ON RADIO-FREQUENCY POWER IN PLASMAS. - : AIP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The plasma electron density and temperature were measured in hydrogen electron-cyclotron resonance (ECR) plasma and combined ECR + radio-frequency (RF) discharges in the TOMAS facility. The results of ECR and combined ECR+RF discharges studies are compared. With an addition of RF, it is possible to vary the plasma parameters around the values provided by the ECR discharge. The propagation of slow (SW) and fast (FW) waves in hydrogen plasma is analyzed. Depending on the plasma density and the parallel component of the wave vector three cases are possible: SW propagation only, SW and FW simultaneous propagation, and FW propagation only.
  •  
16.
  • Litnovsky, A., et al. (författare)
  • Diagnostic mirrors for ITER : research in the frame of International Tokamak Physics Activity
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirrors will be used as first plasma-viewing elements in optical and laser-based diagnostics in ITER. Deterioration of the mirror performance due to e.g. sputtering of the mirror surface by plasma particles or deposition of impurities will hamper the entire performance of the affected diagnostic and thus affect ITER operation. The Specialists Working Group on First Mirrors (FM SWG) in the Topical Group on Diagnostics of the International Tokamak Physics Activity (ITPA) plays an important role in finding solutions for diagnostic first mirrors. Sound progress in research and development of diagnostic mirrors in ITER was achieved since the last overview in 2009. Single crystal (SC) rhodium (Rh) mirrors became available. SC rhodium and molybdenum (Mo) mirrors survived in conditions corresponding to similar to 200 cleaning cycles with a negligible degradation of reflectivity. These results are important for a mirror cleaning system which is presently under development. The cleaning system is based on sputtering of contaminants by plasma. Repetitive cleaning was tested on several mirror materials. Experiments comprised contamination/cleaning cycles. The reflectivity SC Mo and Rh mirrors has changed insignificantly after 80 cycles. First in situ cleaning using radiofrequency (RF) plasma was conducted in EAST tokamak with a mock-up plate of ITER edge Thomson Scattering (ETS) with five inserted mirrors. Contaminants from the mirrors were removed. Physics of cleaning discharge was studied both experimentally and by modeling. Mirror contamination can also be mitigated by protecting diagnostic ducts. A deposition mitigation (DeMi) duct system was exposed in KSTAR. The real-time measurement of deposition in the diagnostic duct was pioneered during this experiment. Results evidenced the dominating effect of the wall conditioning and baking on contamination inside the duct. A baffled cassette with mirrors was exposed at the main wall of JET for 23,6 plasma hours. No significant degradation of reflectivity was measured on mirrors located in the ducts. Predictive modeling was further advanced. A model for the particle transport, deposition and erosion at the port-plug was used in selecting an optical layout of several ITER diagnostics. These achievements contributed to the focusing of the first mirror research thus accelerating the diagnostic development. Modeling requires more efforts. Remaining crucial issues will be in a focus of the future work of the FM SWG.
  •  
17.
  • López-Rodríguez, D., et al. (författare)
  • Characterisation of radio frequency plasmas in the upgraded TOMAS device
  • 2023
  • Konferensbidrag (refereegranskat)abstract
    • To complement wall conditioning research in TOMAS, a characterisation of radio-frequency hydrogen plasmas has been performed using a radially movable triple Langmuir probe. Experimental measurements of electron temperature and density radial profiles at different magnetic field on axis strengths and neutral pressures have been performed. First results of simulations of the radial profiles with the code TOMATOR-1D can qualitatively reproduce the measurements of the diagnostic and may be used to understand the behaviour of the waves inside the plasma.
  •  
18.
  • Moon, Sunwoo, et al. (författare)
  • Characterization of neutral particle fluxes from ICWC and ECWC plasmas in the TOMAS facility
  • 2021
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; 96:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron- (ECWC) and ion- (ICWC) cyclotron wall conditioning are essential means for controlled fusion to modify the surface state of plasma-facing components in order to reduce impurity generation and fuel accumulation in the wall. Development of ECWC and ICWC requires characterization of neutral particle fluxes generated in discharges, because neutrals enhance the homogeneity of the conditioning, which may contribute to remote or shadowed areas, especially in the presence of a permanent magnetic field (e.g. W7-X, ITER). A time-of-flight neutral particle analyzer (ToF-NPA) with 4.07 m flight distance is employed to measure time- and energy-resolved low energetic (<1 keV) neutral particle distributions. The ToF-NPA setup tested at the EXTRAP T2R reversed field pinch was installed at the TOMAS toroidal plasma facility to determine low energy neutral particle fluxes while investigating the impact of the gas pressure in the instrument and compatibility with low count rates during EC- and ICWC discharges. TOMAS has a major radius of 0.78 m and provides various plasma operation conditions: toroidal magnetic field up to 0.12 T, EC frequency 2.45 GHz with the power of 0.6-6 kW, IC frequency of 10-50 MHz with the power of up to 6 kW. Early results on the characterization of three phases (EC only, EC + IC, and IC only) of hydrogen discharges demonstrate: (i) the low energy (10-725 eV) neutrals distribution has been determined by the NPA system, (ii) the mixed EC + IC phase produces the highest population of neutral particles, while the EC only provides one order of magnitude lower rate, (iii) the neutrals produced in IC only have higher average energy (28 eV) than EC only (7 eV) and EC + IC (16 eV).
  •  
19.
  • Moon, Sunwoo, et al. (författare)
  • First mirror test in JET for ITER : Complete overview after three ILW campaigns
  • 2019
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015-2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011-2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20-80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5 x 10(17) cm(-2), W is up to 4.3 x 10(17) cm(-2), while the content of Ni is the greatest in the outer divertor: 3.8 x 10(17) cm(-2). Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1 x 10(16) cm(-2). The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s(-1)) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred.
  •  
20.
  • Moon, Sunwoo, et al. (författare)
  • Fuel inventory and impurity deposition in castellated tungsten tiles in KSTAR : experiment and modelling
  • 2020
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T171:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma-facing components have castellated structure for thermo-mechanical durability and integrity under high heat flux loads. However, fuel co-deposition in the grooves of the castellation may enhance fuel retention. In KSTAR, castellated tungsten tiles were tested to investigate the impact of tile shaping and misalignment on the retention. The tiles with poloidal and toroidal gaps of 0.5 mm were exposed at the divertor during a whole campaign encompassing 4364 s of plasma operation. Surfaces inside the gaps were analysed by means of 3He-based micro-NRA, ERDA and PIXE. Modelling of carbon deposition was performed with the impurity transport code 3D-GAPS assuming impurity penetration along the magnetic field lines with plasma-wetted areas defined by simple geometrical shadowing. The main deposited element is carbon with different concentration at the entrance of the groove, dependent on the tile shaping: 6 x 10(17) cm(-2) for a chamfered and misaligned gap and up to 283 x 10(17) cm(-2) for a flat and aligned gap. The deposition patterns are exponentially decreased to 4-10 x 10(16) cm(-2) inside the gap. Deuterium concentration in the gaps described above ranges, respectively, from 2 x 10(17) cm(-2) to 50 x 10(17) cm(-2) at the top of the groove and decreases to 1-4 x 10(16) cm(-2) following the carbon deposition trends. The highest carbon and deuterium densities are measured at the plasma-exposed side of the flat tile and aligned gap. Modelled deposition profiles reproduce qualitatively the experimentally observed trends.
  •  
21.
  • Moon, Sunwoo, 1984- (författare)
  • Impact of erosion and deposition processes on wall materials in tokamaks
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding of material migration and control of fuel retention are essential for the safe operation of a reactor-class fusion machine. Work presented in the thesis focuses on erosion-deposition processes which are decisive for the formation and properties of co-deposited fuel-containing layers on plasma-facing and diagnostic components, and for the dust formation. The thesis is based on experiments carried out in plasma devices such as JET-ILW, KSTAR, EXTRAP-T2R, TOMAS and, in materials research laboratories where comprehensive analyses of the plasma-exposed materials were performed by a large number of complementary ion, electron and optical methods. The major objectives were to determine: (a) plasma impact on test mirrors; (b) properties of metal dust generated under operation with metal walls in JET with the ITER-Like Wall; (c) material transport to areas shadowed from the direct plasma line-of-sight; (d) neutral particle fluxes in wall conditioning discharges. All these topics are inter-related and, they are in line with the ITER needs in areas of diagnostic development, mitigation of fuel inventory and detailed knowledge of dust particles generated in the tokamak with metal walls. The novelty in research is demonstrated by several elements. Plasma impact on diagnostic mirrors was determined by exposure of test mirrors in JET two types of holders including the ITER-like assembly resembling a diagnostic duct in a reactor. Dust studies allowed for the determination of particles’ properties (size, weight) and, for the classification of various detected objects. The impact of tile shaping and intentional misalignment on fuel retention was revealed in a dedicated experiment in KSTAR. A neutral particle analyser was first tested at EXTRAP-T2R and then installed at the TOMAS facility. Particle fluxes were characterized in wall conditioning discharges heated by electron- and ion cyclotron systems.
  •  
22.
  •  
23.
  • Rubel, Marek, et al. (författare)
  • Application of Ion Beam Analysis in Studies of First Wall Materials in Controlled Fusion Devices
  • 2022
  • Ingår i: Physics. - : MDPI AG. - 2624-8174. ; 4:1, s. 37-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper provides a concise overview of ion beam analysis methods and procedures in studies of materials exposed to fusion plasmas in controlled fusion devices with magnetic confinement. An impact of erosion-deposition processes on the morphology of wall materials is presented. In particular, results for deuterium analyses are discussed. Underlying physics, advantages and limitations of methods are addressed. The role of wall diagnostics in studies of material migration and fuel retention is explained. A brief note on research and handling of radioactive and beryllium-contaminated materials is also given.
  •  
24.
  • Rubel, Marek, et al. (författare)
  • Dust generation in tokamaks : Overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall
  • 2018
  • Ingår i: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 136, s. 579-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Operation of the JET tokamak with beryllium and tungsten ITER-like wall provides unique opportunity for detailed studies on dust generation: quantity, morphology, location, etc. The programme carried out in response to ITER needs for safety assessment comprises: (i) remotely controlled vacuum cleaning of the divertor; (ii) local sampling of loosely bound matter from plasma-facing components (PFC); (iii) collection of mobilized dust on various erosion-deposition probes located in the divertor and in the main chamber. Results of comprehensive analyses performed by a number of complementary techniques, e.g. a range of microscopy methods, electron and ion spectroscopy, liquid scintillography and thermal desorption, are summarized by following points: (a) Total amount of dust collected by vacuum cleaning after three campaigns is about 1-1.4 g per campaign (19.1-23.5 h plasma operation), i.e. over 100 times smaller than in JET operated with carbon walls (i.e. in JET-C). (b) Two major categories of Be dust are identified: flakes of co-deposits formed on PFC and droplets (2-10 mu m in diameter). Small quantifies, below 1 g, of Be droplets and splashes are associated mainly with melting of beryllium limiters.
  •  
25.
  • Rubel, Marek, et al. (författare)
  • First mirror erosion-deposition studies in JET using an ITER-like mirror test assembly
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 61:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror tests for ITER have been carried out in JET for over 15 years. During the third JET campaign with the ITER-like wall (2015-2016), comprising a total tokamak plasma exposure duration of 23.4 h and 1027 h of glow discharge cleaning, a new experiment was performed with a specially designed ITER-like test assembly housing six polycrystalline molybdenum mirror samples and featuring trapezoidal entrance apertures simulating the geometry of cut-outs in the diagnostic first wall of the ITER shielding blanket. The assembly was installed on the vacuum vessel wall at the outer midplane, set back radially behind the JET poloidal outer limiters such that the contact with thermal plasma should be largely avoided. The total and diffuse reflectivity of all mirrors was measured in the range 300-2500 nm before and after exposure. Post-exposure studies of mirror surface composition and of surfaces outside and inside the assembly were performed using microscopy, x-ray spectroscopy and ion beam analysis methods. The main results are: (i) no measured degradation of total reflectivity; (ii) diffuse reflectivity increased especially at short wavelengths (below 500 nm) from 1.1 to 2.7% and from 0.8%-1.3% above 1000 nm; (iii) mirrors were coated with a thin co-deposited layer (similar to 20-30 nm) containing carbon, oxygen and traces of nitrogen, beryllium and metals (Ni, Cr, Fe); (iv) no deuterium was detected; (v) surface composition of the mirror box inner walls was similar to that of the mirrors; (vi) less than or similar to 100 nm thick beryllium was the main component on external surfaces of the assembly. These results provide new input to ITER both for the modelling of FM erosion/deposition and for the consideration of requirements for mirror cleaning methods.
  •  
26.
  • Stancar, Ziga, et al. (författare)
  • Multiphysics approach to plasma neutron source modelling at the JET tokamak
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel multiphysics methodology for the computation of realistic plasma neutron sources has been developed. The method is based on state-of-the-art plasma transport and neutron spectrum calculations, coupled with a Monte Carlo neutron transport code, bridging the gap between plasma physics and neutronics. In the paper two JET neutronics tokamak models are used to demonstrate the application of the developed plasma neutron sources and validate them. Diagnostic data for the record JET D discharge 92436 are used as input for the TRANSP code, modelling neutron emission in two external plasma heating scenarios, namely using only neutral beam injection and a combination of the latter and ion cyclotron resonance heating. Neutron spectra, based on plasma transport results, are computed using the DRESS code. The developed PLANET code package is employed to generate plasma neutron source descriptions and couple them with the MCNP code. The effects of using the developed sources in neutron transport calculations on the response of JET neutron diagnostic systems is studied and compared to the results obtained with a generic plasma neutron source. It is shown that, although there are significant differences in the emissivity profiles, spectra shape and anisotropy between the neutron sources, the integral response of the time-resolved ex-vessel neutron detectors is largely insensitive to source changes, with major relative deviations of up to several percent. However it is calculated that, due to the broadening of neutron spectra as a consequence of external plasma heating, larger differences may occur in activation of materials which have threshold reactions located at DD neutron peak energies. The PLANET plasma neutron source computational methodology is demonstrated to be suitable for detailed neutron source effect studies on JET during DT experiments and can be applied to ITER analyses.
  •  
27.
  • Telesca, G., et al. (författare)
  • COREDIV numerical simulation of high neutron rate JET-ILW DD pulses in view of extension to JET-ILW DT experiments
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Two high performance JET-ILW pulses, pertaining to the 2016 experimental campaign, have been numerically simulated with the self-consistent code COREDIV with the aim of predicting the ELM-averaged power load to the target when extrapolated to DT plasmas. The input power of about 33 MW as well as the total radiated power and the average density are similar in the two pulses, but for one of them the density is provided by combined low gas puff and pellet injection, characterized by low SOL density, for the other one by gas fuelling only, at higher SOT. density. Considering the magnetic configuration of theses pulses and the presence of a significant amount of Ni (not included in the version of the code used for these simulations), a number of assumptions are made in order to reproduce numerically the main core and SOL experimental data. The extrapolation to DT plasmas at the original input power of 33 MW, and taking into account only the thermal component of the alpha-power, does not show any significant difference regarding the power to the target with respect to the DD case. In contrast, the simulations at auxiliary power 40 MW, both at the original I-p = 3 MA and at I-p = 4 MA, show that the power to the target for both pulses is possibly too high to be sustained for about 5 s by strike-point sweeping alone without any control by Ne seeding. Even though the target power load may decrease to about 13-15 MW with substantial Ne seeding for both pulses, as from numerical predictions, there are indications suggesting that the control of the power load may be more critical for the pulse with pellet injection, due to the reduced SOL radiation.
  •  
28.
  • Varje, J., et al. (författare)
  • Synthetic diagnostic for the JET scintillator probe lost alpha measurements
  • 2019
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • A synthetic diagnostic has been developed for the JET lost alpha scintillator probe, based on the ASCOT fast ion orbit following code and the AFSI fusion source code. The synthetic diagnostic models the velocity space distribution of lost fusion products in the scintillator probe. Validation with experimental measurements is presented, where the synthetic diagnostic is shown to predict the gyroradius and pitch angle of lost DD protons and tritons. Additionally, the synthetic diagnostic reproduces relative differences in total loss rates in multiple phases of the discharge, which can be used as a basis for total loss rate predictions.
  •  
29.
  •  
30.
  • Widdowson, Anna, et al. (författare)
  • Evaluation of tritium retention in plasma facing components during JET tritium operations
  • 2021
  • Ingår i: Physica Scripta. - : IOP Publishing. - 0031-8949 .- 1402-4896. ; 96:12
  • Tidskriftsartikel (refereegranskat)abstract
    • An assessment of the tritium (T) inventory in plasma facing components (PFC) during JET T and deuterium-tritium (DT) operations is presented based on the most comprehensive ex situ fuel retention data set on JET PFCs from the 2015-2016 ILW3 operating period is presented. The global fuel retention is 4.19 x 10(23) D atoms, 0.19% of injected fuel. The inner divertor remains the region of highest fuel retention (46.5%). The T inventory in PFCs at the end of JET operations is calculated as 7.48 x 10(22) atoms and is informative for accountancy, clean-up efficacy and waste liability assessments. The T accumulation rate at the upper inner divertor during JET DT operations has been used to assess the requirements and frequency of operation of a new laser induced desorption diagnostic to be installed on JET for the final DT experiments in 2023.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy