SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moore I.D.) "

Sökning: WFRF:(Moore I.D.)

  • Resultat 1-50 av 192
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2010
  • swepub:Mat__t
  •  
2.
  • Aad, G., et al. (författare)
  • Commissioning of the ATLAS Muon Spectrometer with cosmic rays
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 875-916
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.
  •  
3.
  •  
4.
  •  
5.
  • Aad, G., et al. (författare)
  • Readiness of the ATLAS Tile Calorimeter for LHC collisions
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:4, s. 1193-1236
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.
  •  
6.
  • Aad, G., et al. (författare)
  • Studies of the performance of the ATLAS detector using cosmic-ray muons
  • 2011
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 71:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.
  •  
7.
  • Aad, G., et al. (författare)
  • The ATLAS Inner Detector commissioning and calibration
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 787-821
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1 +/- 0.9 mu m and a relative momentum resolution sigma (p) /p=(4.83 +/- 0.16)x10(-4) GeV(-1)xp (T) have been measured for high momentum tracks.
  •  
8.
  • Aad, G., et al. (författare)
  • The ATLAS Simulation Infrastructure
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 823-874
  • Tidskriftsartikel (refereegranskat)abstract
    • The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.
  •  
9.
  • Abdalla, H., et al. (författare)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
10.
  • Abdalla, H., et al. (författare)
  • An extreme particle accelerator in the Galactic plane : HESS J1826-130
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02 (stat)degrees stat degrees +/- 0.05 (sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2 (+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.
  •  
11.
  • Abdalla, H., et al. (författare)
  • Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
  •  
12.
  • Abdalla, H., et al. (författare)
  • Detection of very-high-energy gamma-ray emission from the colliding wind binary eta Car with HESS
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray emitters. eta Car is the most prominent member of this object class and is confirmed to emit phase-locked HE gamma rays from hundreds of MeV to 100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) gamma-ray emission from eta Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.).Methods. The region around eta Car was observed with H.E.S.S. between orbital phase p = 0.78-1.10, with a closer sampling at p approximate to 0.95 and p approximate to 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the eta Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions.Results. H.E.S.S. detected VHE gamma-ray emission from the direction of eta Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE gamma rays agree within statistical and systematic errors before and after periastron. The gamma-ray spectrum extends up to at least 400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.
  •  
13.
  • Abdalla, H., et al. (författare)
  • Evidence of 100 TeV gamma-ray emission from HESS J1702-420 : A new PeVatron candidate
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few x 10(15) eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate. Methods. We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a threedimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the gamma-ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at gamma-ray energies >10 GeV. Results. We report the detection of gamma-rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5:4 sigma confidence level. The power law gamma-ray spectrum of HESS J1702-420A extends with an index of Gamma = 1:53 +/- 0:19(stat) +/- 0:20(sys) and without curvature up to the energy band 64 113 TeV, in which it was detected by H.E.S.S. at a 4:0 sigma confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2:08 +/- 0:49(stat) +/- 0:62(sys)) x 10(-13) cm(-2) s(-1) and a radius of (0:06 +/- 0:02(stat) +/- 0:03(sys))degrees, HESS J1702-420A is outshone - below a few tens of TeV - by the companion HESS J1702-420B. The latter has a steep spectral index of = 2:62 +/- 0:10(stat) +/- 0:20(sys) and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-o ff energy of the particle distribution powering HESS J1702-420A is found to be higher than 0:5 PeV at a 95% confidence level. Conclusions. For the first time, H.E.S.S. resolved two components with significantly di fferent morphologies and spectral indices, both detected at >5 sigma confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4:0 sigma confidence level in the energy band 64 113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard gamma-ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either.
  •  
14.
  • Abdalla, H., et al. (författare)
  • H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830–211
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Tidskriftsartikel (refereegranskat)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
15.
  • Abdalla, H., et al. (författare)
  • HESS and Fermi-LAT observations of PSR B1259-63/LS 2883 during its 2014 and 2017 periastron passages
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. PSR B1259-63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies. Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259-63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259-63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star's circumstellar disc and/or the conditions under which the HE gamma-ray flares develop. Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014, and 2017 are analysed. Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron t(p) and two peaks coinciding with the times at which the neutron star crosses the companion's circumstellar disc (similar to t(p) 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (similar to t(p) + 30 d) and at phases before the first disc crossing (similar to t(p) - 35 d). The spectral energy range now extends to below 200 GeV and up to similar to 45 TeV. Conclusions. PSR B1259-63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259-63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.
  •  
16.
  • Abdalla, H., et al. (författare)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
17.
  • Abdalla, H., et al. (författare)
  • HESS and Suzaku observations of the Vela X pulsar wind nebula
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.
  •  
18.
  • Abdalla, H., et al. (författare)
  • HESS detection of very high-energy gamma-ray emission from the quasar PKS 0736+017
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Flat-spectrum radio-quasars (FSRQs) are rarely detected at very high energies (E& x2004;>=& x2004;100 GeV) due to their low-frequency-peaked spectral energy distributions. At present, only six FSRQs are known to emit very high-energy (VHE) photons, representing only 7% of the VHE extragalactic catalog, which is largely dominated by high-frequency-peaked BL Lacertae objects. Aims. Following the detection of MeV-GeV gamma-ray flaring activity from the FSRQ PKS 0736+017 (z& x2004;=& x2004;0.189) with Fermi-LAT, the H.E.S.S. array of Cherenkov telescopes triggered target-of-opportunity (ToO) observations on February 18, 2015, with the goal of studying the gamma-ray emission in the VHE band. Methods. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft X-ray and optical-UV bands, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, and the ATOM, the KAIT, and the ASAS-SN telescopes. Results. VHE emission from PKS 0736+017 was detected with H.E.S.S. only during the night of February 19, 2015. Fermi-LAT data indicate the presence of a gamma-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling timescale of around six hours. The gamma-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The gamma-ray observations with H.E.S.S. and Fermi-LAT are used to put constraints on the location of the gamma-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line region r(BLR) with a bulk Lorentz factor Gamma& x2004;similar or equal to& x2004;20, or at the level of the radius of the dusty torus r(torus) with Gamma& x2004;similar or equal to& x2004;60. Conclusions. PKS 0736+017 is the seventh FSRQ known to emit VHE photons, and at z& x2004;=& x2004;0.189 is the nearest so far. The location of the gamma-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.
  •  
19.
  • Abdalla, H., et al. (författare)
  • HESS observations of the flaring gravitationally lensed galaxy PKS 1830-211
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Tidskriftsartikel (refereegranskat)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
20.
  • Abdalla, H., et al. (författare)
  • LMC N132D : A mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime. Aims. The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR. Methods. We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5 sigma detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included. Results. We unambiguously detect N132D at VHE with a significance of 5.7 sigma. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission. Conclusions. SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.
  •  
21.
  • Abdalla, H., et al. (författare)
  • Particle transport within the pulsar wind nebula HESS J1825-137
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Aims. The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) gamma-ray properties of the nebula. Methods. The nebula emission is revealed to extend out to 1.5 degrees from the pulsar, similar to 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of similar to 100 pc, potentially the largest gamma-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R proportional to E alpha with alpha = -0.29 +/- 0.04(stat) +/- 0.05(sys) disfavours a pure diffusion scenario for particle transport within the nebula. The total gamma-ray flux of the nebula above 1 TeV is found to be (1.12 +/- 0.03(stat) +/- 0.25(sys)) +/- 10(-11) cm(-2) s(-1), corresponding to similar to 64% of the flux of the Crab nebula. Results. HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE gamma-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.
  •  
22.
  • Abdalla, H., et al. (författare)
  • Probing the Magnetic Field in the GW170817 Outflow Using HESS Observations
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 894:2, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of the first electromagnetic counterpart to the binary neutron star (BNS) merger remnant GW170817 established the connection between short gamma-ray bursts and BNS mergers. It also confirmed the forging of heavy elements in the ejecta (a so-called kilonova) via the r-process nucleosynthesis. The appearance of nonthermal radio and X-ray emission, as well as the brightening, which lasted more than 100 days, were somewhat unexpected. Current theoretical models attempt to explain this temporal behavior as either originating from a relativistic off-axis jet or a kilonova-like outflow. In either scenario, there is some ambiguity regarding how much energy is transported in the nonthermal electrons versus the magnetic field of the emission region. Combining the Very Large Array (radio) and Chandra (X-ray) measurements with observations in the GeV-TeV domain can help break this ambiguity, almost independently of the assumed origin of the emission. Here we report for the first time on deep H.E.S.S. observations of GW170817/GRB 170817A between 124 and 272 days after the BNS merger with the full H.E.S.S. array of telescopes, as well as on an updated analysis of the prompt (<5 days) observations with the upgraded H.E.S.S. phase-I telescopes. We discuss implications of the H.E.S.S. measurement for the magnetic field in the context of different source scenarios.
  •  
23.
  • Abdalla, H., et al. (författare)
  • Resolving acceleration to very high energies along the jet of Centaurus A
  • 2020
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 582:7812, s. 356-359
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby radio galaxy Centaurus A belongs to a class of active galaxies that are luminous at radio wavelengths. Most show collimated relativistic outflows known as jets, which extend over hundreds of thousands of parsecs for the most powerful sources. Accretion of matter onto the central supermassive black hole is believed to fuel these jets and power their emission(1). Synchrotron radiation from relativistic electrons causes the radio emission, and it has been suggested that the X-ray emission from Centaurus A also originates in electron synchrotron processes(2-4). Another possible explanation is inverse Compton scattering with cosmic microwave background (CMB) soft photons(5-7). Synchrotron radiation needs ultrarelativistic electrons (about 50 teraelectronvolts) and, given their short cooling times, requires some continuous re-acceleration mechanism(8). Inverse Compton scattering, on the other hand, does not require very energetic electrons, but the jets must stay highly relativistic on large scales (exceeding 1 megaparsec). Some recent evidence disfavours inverse Compton-CMB models(9-12), although other work seems to be compatible with them(13,14). In principle, the detection of extended gamma-ray emission, which directly probes the presence of ultrarelativistic electrons, could distinguish between these options. At gigaelectronvolt energies there is also an unusual spectral hardening(15,16)in Centaurus A that has not yet been explained. Here we report observations of Centaurus A at teraelectronvolt energies that resolve its large-scale jet. We interpret the data as evidence for the acceleration of ultrarelativistic electrons in the jet, and favour the synchrotron explanation for the X-rays. Given that this jet is not exceptional in terms of power, length or speed, it is possible that ultrarelativistic electrons are commonplace in the large-scale jets of radio-loud active galaxies. Observations of the radio galaxy Centaurus A at teraelectronvolt energies resolve its large-scale jet and favour electron synchrotron processes as the source of its X-ray emission.
  •  
24.
  • Abdalla, H., et al. (författare)
  • Resolving the Crab pulsar wind nebula at teraelectronvolt energies
  • 2020
  • Ingår i: Nature Astronomy. - : Nature Publishing Group. - 2397-3366. ; 4:2, s. 167-173
  • Tidskriftsartikel (refereegranskat)abstract
    • An angular extension at gamma-ray energies of 52 arcseconds is detected for the Crab nebula, revealing the emission region of the highest-energy gamma rays; simulations of the electromagnetic emission provide a non-trivial test of our understanding of particle acceleration in the Crab nebula. The Crab nebula is one of the most-studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very-high-energy gamma rays(1,2). It is known from observations in the radio to gamma-ray part of the spectrum that the nebula is powered by a pulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula, a region of up to ten light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very-high-energy gamma rays by Compton up-scattering of ambient low-energy photons. Although the synchrotron morphology of the nebula is well established, it has not been known from which region the very-high-energy gamma rays are emitted(3-8). Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), much larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest-energy gamma rays. These gamma rays enable us to probe a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our measurement, providing a non-trivial test of our understanding of particle acceleration in the Crab nebula.
  •  
25.
  • Abdalla, H., et al. (författare)
  • Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow
  • 2021
  • Ingår i: Science. - : American Association of Advancement in Science. - 0036-8075 .- 1095-9203. ; 372:6546, s. 1081-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very- high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 +/- 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma- ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios.
  •  
26.
  • Abdalla, H., et al. (författare)
  • Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 918:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmological N-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter (DM) subhalos. These subhalos could shine in gamma-rays and eventually be detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-Large Area Telescope Objects (UFOs) to identify them as possible tera-electron-volt-scale DM subhalo candidates. We search for very-high-energy (E greater than or similar to 100 GeV) gamma-ray emissions using H.E.S.S. observations toward four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any data set of the four observed UFOs or in the combined UFO data set, strong constraints are derived on the product of the velocity-weighted annihilation cross section sigma v by the J factor for the DM models. The 95% confidence level observed upper limits derived from combined H.E.S.S. observations reach sigma vJ values of 3.7 x 10(-5) and 8.1 x 10(-6) GeV(2 )cm(-2 )s(-1) in the W (+) W (-) and tau (+) tau (-) channels, respectively, for a 1 TeV DM mass. Focusing on thermal weakly interacting massive particles, the H.E.S.S. constraints restrict the J factors to lie in the range 6.1 x 10(19)-2.0 x 10(21) GeV(2 )cm(-5) and the masses to lie between 0.2 and 6 TeV in the W (+) W (-) channel. For the tau (+) tau (-) channel, the J factors lie in the range 7.0 x 10(19)-7.1 x 10(20) GeV(2 )cm(-5) and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the J-factor distribution for Milky Way-sized galaxies, the DM models with masses >0.3 TeV for the UFO emissions can be ruled out at high confidence level.
  •  
27.
  • Abdalla, H., et al. (författare)
  • Searching for TeV Gamma-Ray Emission from SGR 1935+2154 during Its 2020 X-Ray and Radio Bursting Phase
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 919:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetar hyperflares are the most plausible explanation for fast radio bursts (FRBs)-enigmatic powerful radio pulses with durations of several milliseconds and high brightness temperatures. The first observational evidence for this scenario was obtained in 2020 April when an FRB was detected from the direction of the Galactic magnetar and soft gamma-ray repeater SGR 1935+2154. The FRB was preceded by two gamma-ray outburst alerts by the BAT instrument aboard the Swift satellite, which triggered follow-up observations by the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observed SGR 1935+2154 for 2 hr on 2020 April 28. The observations are coincident with X-ray bursts from the magnetar detected by INTEGRAL and Fermi-GBM, thus providing the first very high energy gamma-ray observations of a magnetar in a flaring state. High-quality data acquired during these follow-up observations allow us to perform a search for short-time transients. No significant signal at energies E > 0.6 TeV is found, and upper limits on the persistent and transient emission are derived. We here present the analysis of these observations and discuss the obtained results and prospects of the H.E.S.S. follow-up program for soft gamma-ray repeaters.
  •  
28.
  • Abdalla, H., et al. (författare)
  • Simultaneous observations of the blazar PKS 2155-304 from ultra-violet to TeV energies
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the results of the first ever contemporaneous multi-wavelength observation campaign on the BL Lac object PKS 2155-304 involving Swift, NuSTAR, Fermi-LAT, and H.E.S.S. The use of these instruments allows us to cover a broad energy range, which is important for disentangling the different radiative mechanisms. The source, observed from June 2013 to October 2013, was found in a low flux state with respect to previous observations but exhibited highly significant flux variability in the X-rays. The high-energy end of the synchrotron spectrum can be traced up to 40 keV without significant contamination by high-energy emission. A one-zone synchrotron self-Compton model was used to reproduce the broadband flux of the source for all the observations presented here but failed for previous observations made in April 2013. A lepto-hadronic solution was then explored to explain these earlier observational results.
  •  
29.
  • Abdalla, H., et al. (författare)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
30.
  • Abdalla, H., et al. (författare)
  • Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with HESS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten super- novae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of similar to 10(-13) cm(-)(2)s(-1) are established, corresponding to upper limits on the luminosities in the range similar to 2 x 10(39) to similar to 1 x 10(42) erg s(-1). These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between similar to 2 x 10(-5) and similar to 2 x 10(-3) M-circle dot yr(-1) under reasonable assumptions on the particle acceleration parameters.
  •  
31.
  • Abdalla, H., et al. (författare)
  • Very high energy gamma-ray emission from two blazars of unknown redshift and upper limits on their distance
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 494:4, s. 5590-5602
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.
  •  
32.
  • Abdallah, H., et al. (författare)
  • Search for dark matter annihilation in the Wolf-Lundmark-Melotte dwarf irregular galaxy with HESS
  • 2021
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 103:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well-measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the five-telescopes of the high energy stereoscopic system observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels, as well as the prompt gamma gamma emission. For the tau+tau- channel, the limits reach a value of about 4 x 10-22 cm3 s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma gamma channel, the upper limit reaches a value of about 5 x 10-24 cm3 s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200, with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
  •  
33.
  • Abdallah, H., et al. (författare)
  • Search for dark matter signals towards a selection of recently detected DES dwarf galaxy satellites of the Milky Way with HESS
  • 2020
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 102:6, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Dwarf spheroidal galaxy satellites of the Milky Way are prime targets for indirect detection of dark matter with gamma rays due to their proximity, high dark matter content, and absence of nonthermal emission processes. Recently, the Dark Energy Survey (DES) revealed the existence of new ultrafaint dwarf spheroidal galaxies in the southern-hemisphere sky, therefore ideally located for ground-based observations with the imaging atmospheric Cherenkov telescope array H.E.S.S. We present a search for very-high-energy (E greater than or similar to 100 GeV) gamma-ray emission using H.E.S.S. observations carried out recently towards Reticulum II, Tucana II, Tucana III, Tucana IV, and Grus II satellites. No significant very-high-energy gamma-ray excess is found from the observations on any individual object nor in the combined analysis of all the datasets. Using the most recent modeling of the dark matter distribution in the dwarf galaxy halo, we compute for the first time on DES satellites individual and combined constraints from Cherenkov telescope observations on the annihilation cross section of dark matter particles in the form of Weakly Interacting Massive Particles. The combined 95% C.L. observed upper limits reach similar or equal to 1 x 10(-23) cm(3) s(-1) in the W+W- channel and 4 x 10(-26) cm(3) s(-1) in the gamma gamma channels for a dark matter mass of 1.5 TeV. The H.E.S.S. constraints well complement the results from Fermi-LAT, HAWC, MAGIC, and VERITAS and are currently the most stringent in the gamma gamma channels in the multi-GeV/multi-TeV mass range.
  •  
34.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
35.
  • Barausse, Enrico, et al. (författare)
  • Prospects for fundamental physics with LISA
  • 2020
  • Ingår i: General Relativity and Gravitation. - : SPRINGER/PLENUM PUBLISHERS. - 0001-7701 .- 1572-9532. ; 52:8
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA,we present here a sample of what we view as particularly promising fundamental physics directions. We organize these directions through a "science-first" approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.
  •  
36.
  • Gao, Zhihao, et al. (författare)
  • Applying machine learning methods for the analysis of two-dimensional mass spectra
  • 2023
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 59:169
  • Tidskriftsartikel (refereegranskat)abstract
    • In a measurement of isomeric yield-ratios in fission, the Phase-Imaging Ion-Cyclotron-Resonance technique, which projects the radial motions of ions in the Penning trap (JYFLTRAP) onto a position-sensitive micro-channel plate detector, has been applied. To obtain the yield ratio, that is the relative population of two states of an isomer pair, a novel analysis procedure has been developed to determine the number of detected ions in each state, as well as corrections for the detector efficiency and decay losses. In order to determine the population of the states in cases where their mass difference is too small to reach full separation, a Bayesian Gaussian Mixture model was implemented. The position-dependent efficiency of the micro-channel plate detector was calibrated by mapping it with 133Cs+ ions, and a Gaussian Process was trained with the position data to construct an efficiency function that could be used to correct the recorded distributions. The obtained numbers of counts of excited and ground-state ions were used to derive the isomeric yield ratio, taking into account decay losses as well as feeding from precursors.
  •  
37.
  • Gao, Zhihao, et al. (författare)
  • Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products
  • 2022
  • Ingår i: European Physical Journal. - : Springer Nature. - 1286-0042 .- 1286-0050. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • To enhance the production of medium-heavy,neutron-rich nuclei, and to facilitate measurements of independentyields of neutron-induced fission, a proton-toneutronconverter and a dedicated ion guide for neutroninducedfission have been developed for the IGISOL facilityat the University of Jyväskylä. The ion guide holds thefissionable targets, and the fission products emerging fromthe targets are collected in helium gas and transported to thedownstream experimental stations.Acomputer model, basedon a combination of MCNPX for modeling the neutron production,the fission code GEF, and GEANT4 for the transportof the fission products, was developed. The model willbe used to improve the setup with respect to the productionand collection of fission products. In this paper we benchmarkthe model by comparing simulations to a measurementin which fission products were implanted in foils located atdifferent positions in the ion guide. In addition, the productsfrom neutron activation in the titanium foil and the uraniumtargets are studied. The result suggests that the neutron fluxat the high-energy part of the neutron spectrum is overestimatedby approximately 40%.However, the transportation offission products in the uranium targets agrees with the experimentwithin 10%. Furthermore, the simulated transportationof fission products in the helium gas achieves almost perfectagreement with the measurement. Hence, we conclude thatthe model, after correction for the neutron flux, is well suitedfor optimization studies of future ion guide designs.
  •  
38.
  • Gao, Zhihao, et al. (författare)
  • Fission studies at IGISOL/JYFLTRAP : Simulations of the ion guide for neutron-induced fission and comparison with experimental data
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation.In order to allow fission yield measurements in the low yield regions, towards the tails and in the symmetric part of the mass distribution, the stopping and extraction efficiency of the ion guide has to be significantly improved. This objective can be achieved by increasing the size while introducing electric field guidance using a combination of static electrodes and an RF-carpet. To this end, the GEANT4 model is used to optimise the design of such an ion guide.
  •  
39.
  • Gao, Zhihao, et al. (författare)
  • Isomeric yield ratios in proton-induced fission of 238U
  • 2023
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 108:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Isomeric yield ratios are an important observable in nuclear fission as they can guide model development by providing insight into the angular momentum generation. Furthermore, isomeric yield ratios are important in applications for nuclear energy, as well as in the study of the r-process in stellar nucleosynthesis, and in the antineutrino mixing angle from reactor spectra. In nuclear data evaluations, the Madland-England model is commonly used to estimate isomeric yield ratios that have not been measured.Purpose: To measure isomeric yield ratios in 25-MeV proton-induced fission of 238U, and to compare the result with the values obtained from the Madland-England model and the fission model code GEF. Furthermore, to evaluate whether the predictions of GEF can be improved by coupling it to the nuclear reaction code TALYS.Methods: Isomeric yield ratios in 25-MeV proton-induced fission of 238U have been measured at the Ion GuideIsotope Separate On-Line facility. The excited state and the ground state were separated by mass using the Phase-Imaging Ion-Cyclotron-Resonance technique in the double Penning trap JYFLTRAP. The number of counts of each state was extracted from the phase-images using a Bayesian Gaussian Mixture model and, after corrections fordetector efficiency and decay, the isomeric yield ratios were derived. The experimental values have been compared with the calculated results from the Madland-England model and the GEF code. Furthermore, GEF has been combined with the nuclear reaction code TALYS, in order to take advantage of the latter codes’ implementation of the Hauser-Feshbach formalism, and the results have been compared with the experimental values.Results: From the measurements, 19 new isomeric yield ratios in 25-MeV proton-induced fission of 238U are reported and are, together with another 12 isomeric yield ratios (IYRs) from a previous campaign, compared with the model calculations. It is shown that, though the models manage to capture some of the features observed, there is room for improvement.Conclusions: As predicted by the Madland-England model, a strong correlation between the measured IYRs and the spins of the long-lived states of the fission products is confirmed. However, the IYRs also vary between nuclides with the same spin-parity of the two states, and systematic trends in the IYRs of close-lying isotopes and isotones with similar nuclear configurations are observed.From the comparison of the experimental data with the prediction of GEF it is concluded that more data from proton-induced fission are needed to optimize the internal parameters of GEF. Furthermore, using a combination of GEF and TALYS in most cases results in an underestimation of the yield ratios. This might be explained by an underestimation of the angular momentum on the initial fission fragments by GEF. Altogether, these results highlight the possibility to use measurements of IYRs to improve model predictions and to study the angular momentum generation in nuclear fission.
  •  
40.
  • Gorelov, D., et al. (författare)
  • Developments for neutron-induced fission at IGISOL-4
  • 2016
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584.
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.
  •  
41.
  • Kolhinen, V. S., et al. (författare)
  • Recommissioning of JYFLTRAP at the new IGISOL-4 facility
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 317:Part B, s. 506-509
  • Tidskriftsartikel (refereegranskat)abstract
    • The JYFLTRAP double Penning-trap system was moved to a new location along with the Ion Guide Isotope Separator On-line (IGISOL) facility at the Accelerator Laboratory of the University of Jyväskylä. The move made it possible to upgrade various parts of the facility. For example, separate beam lines for JYFLTRAP and the collinear laser spectroscopy station were constructed after the radio-frequency quadrupole cooler and buncher. In this contribution we give an overview of the new JYFLTRAP facility and results from the first stable ion-beam tests.
  •  
42.
  • Mattera, Andrea, 1985-, et al. (författare)
  • A neutron source for IGISOL-JYFLTRAP : Design and characterisation
  • 2017
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 53:173
  • Tidskriftsartikel (refereegranskat)abstract
    • A white neutron source based on the Be(p,nx) reaction for fission studies at the IGISOLJYFLTRAP facility has been designed and tested. 30 MeV protons impinge on a 5mm thick water-cooled beryllium disc. The source was designed to produce at least 1012 fast neutrons/s on a secondary fission target, in order to reach competitive production rates of fission products far from the valley of stability.The Monte Carlo codes MCNPX and FLUKA were used in the design phase to simulate the neutron energy spectra. Two experiments to characterise the neutron field were performed: the first was carried out at The Svedberg Laboratory in Uppsala (SE), using an Extended-Range Bonner Sphere Spectrometer and a liquid scintillator which used the time-of-flight (TOF) method to determine the energy of the neutrons; the second employed Thin-Film Breakdown Counters for the measurement of the TOF, and activation foils, at the IGISOL facility in Jyväskylä (FI). Design considerations and the results of the two characterisation measurements are presented, providing benchmarks for the simulations.
  •  
43.
  • Mattera, Andrea, 1985-, et al. (författare)
  • Production of Sn and Sb isotopes in high-energy neutron induced fission of natU
  • 2018
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 54
  • Tidskriftsartikel (refereegranskat)abstract
    • The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyvaskyla, Finland. The fission products from high-energy neutron-induced fission of U-nat were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133, were transported to a tape-implantation station and identified using gamma-spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a staggered behaviour around A = 131, not observed in the ENDF/B-VII. 1 evaluation. The yields of antimony also contradict the trend from the evaluation, but are in agreement with a calculation performed using the GEF model that shows the yield increasing with mass in the range A = 128-133.
  •  
44.
  •  
45.
  • Nesterenko, D. A., et al. (författare)
  • High-precision mass measurements for the isobaric multiplet mass equation at A = 52
  • 2017
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Masses of 52Co, 52Com, 52Fe, 52Fem, and 52Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. The isobaric multiplet mass equation for the T = 2 quintet at A = 52 has been studied employing the new mass values. No significant breakdown (beyond the level) of the quadratic form of the IMME was observed (). The cubic coefficient was 6.0(32) keV (). The excitation energies for the isomer and the T = 2 isobaric analog state in 52Co have been determined to be 374(13) keV and 2922(13) keV, respectively. The measured mass values for 52Co and 52Com are 29(10) keV and 16(15) keV higher, respectively, than obtained in a recent storage-ring experiment, and significantly lower than predicted by extrapolations. Consequently, this has an impact on the proton separation energies for 52Co and 53Ni relevant for the astrophysical rapid proton capture process. The Q value for the proton decay from the isomer in 53Co has been determined with an unprecedented precision, keV.
  •  
46.
  • Penttila, H., et al. (författare)
  • Independent Isotopic Product Yields in 25 MeV and 50 MeV Charged Particle Induced Fission of U-238 and Th-232
  • 2014
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752 .- 1095-9904. ; 119, s. 334-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Independent isotopic yields for most elements from Zn to La in 25-MeV proton-induced fission of U-238 and Th-232 have been determined at the IGISOL facility in the University of Jyvaskyla. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in 50-MeV proton-induced fission of U-238 and for Zn, Ga, Rb, Sr, Cd and In in 25-MeV deuterium-induced fission of U-238 have been measured. The utilised technique recently developed at the University of Jyvaskyla, is based on a combination of the ion guide technique and the ability of a Penning trap to unambiguously identify the isotopes by their atomic mass. Since the yields are determined by ion counting, no prior knowledge beyond the mass and half-life of the isotopes was needed for the measurements.
  •  
47.
  • Rakopoulos, Vasileios, et al. (författare)
  • First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
  • 2018
  • Ingår i: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 98:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first time. The comparison of the experimentally determined isomeric yield ratios with data available in the literature shows a reasonable agreement, except for the case of Sn-130 for unspecified reasons. The obtained results were also compared with the GEF model, where good agreement can be noticed in most cases for both reactions. Serious discrepancies can only be observed for the cases of Y-96(,)97 for both reactions. Moreover, based on the isomeric yield ratios, the root-mean-square angular momenta (J(r)(ms)) of the fission fragments after scission were estimated using the TALYS code. The experimentally determined isomeric yield ratios, and consequently the deduced J(rms), for Sn-130 are significantly lower compared to Sn-128 for both fissioning systems. This can be attributed to the more spherical shape of the fragments that contribute to the formation of Sn-130, due to their proximity to the N = 82 shell closure. The values of J(rms) for Sb-129 are higher than Sn-128 for both reactions, despite the same neutron number of both nuclides (N = 78), indicating the odd-Z effect where fission fragments with odd-Z number tend to bear larger angular momentum than even-Z fragments. The isomer production ratio for the isotopes of Sn is more enhanced in the U-na(t)(p, f) reaction than in Th-232(p, f). The opposite is observed for Y-96 and Y-97. These discrepancies might be associated to different scission shapes of the fragments for the two fission reactions, indicating the impact that the different fission modes can have on the isomeric yield ratios.
  •  
48.
  •  
49.
  • Smith, D. L., et al. (författare)
  • Lifetime measurements of the negative-parity 7(-) and 8(-) states in Cd-122
  • 2008
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 77:1, s. 014309-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Advanced Time-Delayed beta gamma gamma(t) method was used to measure lifetimes of selected high-spin states in Cd-122 populated from beta(-) decay of the J(pi)=(9(-)) isomer in Ag-122. From the gamma gamma coincidences, a new energy level was established at 2616.6 keV with a suggested spin-parity assignment of 8(-). Lifetimes were determined for the high-spin states at 2616.6 and 2502.7 keV as T-1/2=1.35(29) ns and 0.24(6) ns, respectively. The transition rates for gamma rays de-exciting the 7(-) states in the N=74 isotones of Cd-122, Sn-124, and Te-126 were found to be very similar.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 192

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy